Classes of stable two-layer schemes
Indeed, putting x = A-^1 y we obtain from (55) the inequality
(y, y) < 6.(A-1y, y),
meaning E < 6.A -l or A -l > E / 6.. By virtue of the inequalities
(Ax, x)^2 <II Ax 112 · 11x11^2 < 6.(Ax, x) 11x112
419
we deduce that (Ax, x) < 6.ll x 112, giving A< 6.E. Lemma 5 implies that
B = A-^1 + O"TE > (1/6.+ O'T) E, B - 0.5rA> 0 for O' > 0' 0 ,
where A= E, 0' 0 = ~ - 1/( r6.).
Lemma 6 Let A be a positive definite operator and inequality (55) hold.
Then
(57)
(58)
( 59)
11 (E + O"rA)-^1 (E - (1 - O') rA) II< 1
II (E + O'TA)-^1 II< 1
1
II (E + O'TA)-^1 II< -
c
1 1
for O' > i5' = -- -
-^0 2 r6.'
for O' > 0,
1 1 - c
for O' > i5' = - - --
- c 2 r6. '
O<s<l.
Proof 1) Since B > ~TA for O' > 0' 0 , by applying Theorem 1 to scheme
( 48) we deduce that for a solution of problem ( 48) the estimate is valid for
any Yn E H and <p = 0:
( 60) 11 Yn + 1 11 < 11 Yn 11 ·
As can readily be observed, scheme (47) for <p = 0 can be rewritten as
Yn+1 =Syn, S = (E + O"rA)-^1 (E - (1 - O') rA).
From here and relation (60) we obtain estimate (57).
2) In order to estimate the norm II B-^1 II, where B = E + O'TA, it
suffices to establish an inequality of the fonn B > O' E, O' > 0. Then
bllxll^2 < (Bx,x) <II Bx II· llxll, II Bx II> bllxll,
and, consequently, 'II B-^1 II< l/b. If O' > 0, then B > E and 11 B-^1 II < 1.
If O' > 0' 0 , then
1-s
B > E + 0' 0 r A= E + 0.5 r A - 6. A.
In conformity with (56), A< 6.E, making it possible to conclude that
B > E + 0.5 rA-(1 - s) E > c E + 0.5 rA > s E
and, therefore, II B-^1 II < 1/s. Observe that estimate (58) holds true also
for any non-self-adjoint operator A > 0, thereby completing the proof of
the lemma.