Other iterative inethodsvVhen providing current nrnnipulations with2 2
1 - p2 + a 2 = 1 - p2 + x ( 1 - po )
o o 1 _ x21 - PZ
1-x^2a2
x2 ,we find thata2(x+po)
CY=----
x (1 - p~)1 + XPo
l+CY=---1-x (^2) '
1
B=--
l +CYx(x +Po)
1 - x^2and, consequently, the expression for the function1 1 p^2 +cy-a~ 'I
f(B)= l+CYPo+ l+CY JCY2+a2= o.
( 1 + CY) PoTaking into account that
2? 2 2 a^2
p 0 +CY - Ci~ = ( 1 +CY) - ( l - p 0 +a ) = l +CY - 2
xit is plain to show that
IIx+ Po
Sii:::; --
1 + XPo
1 - PZ Po+ X
1 - x2 = Po 1 - x2 ,1-x^2
for T = T 0 ---
1 + XPo
739The meaning of this is that a solution of problem (30) satisfies the
estin1ate
with
(39)
x+Po
p=
1 + x Po '
11 Yn - 1l 11 < P^71 11 Yo - U 11
T 0 ( 1 - x")x = ----;====;;o /3 T=T=----
J11 12 + ,; '