References 755
Golant, E. (1978) On conjugate fa111ilies of cliffe1·ence schen1es for equations
of parabolic type with lowe1· membe1·s. Zh. Vychisl. Mat. i Mat. Fiz., 18,
1162-1169 (in Russian); English transl. in USSR C01nput. Mathern. and
Mathern. Physics.
Kant01·ovich, L. and Akilov, G. (1977) Functional Analysis in Normed
Spaces. N auka: l!Ioscow (in Russian).
Ka1·etkina, N. ( 1980) Noncondi ti on ally stable difference schen1es for par-
abolic equations with the first derivatives. Zh. Vychisl. Mat. i Mat. Fiz.,
20, 236-240 (in Russian); English transl. in USSR Co1nput. Mathe1n. and
Mathern. Physics.
Ladyzhenskaya, 0. (1973) Boundary Value Problems of Mathematical
Physics. Nauka: Moscow (in Russian).
Lax, P. and Richtn1ye1· 1 R. (19.56) A servey of stabilit.y of linea1· finite clif-
fe1·ence equations. Comn1. Pm·e Appl. Iviathem., 9, 267-293.
Marchuk, G. ( 197.5) Methods of Con1put.ational Ivia then1atics. Springer:
New York.
Marchuk, G and Shajdurov, V. (1979) Gain in Accuracy of Difference
Schemes. N auka: Moscow (in Russian).
l!Iitchell, A. and Griffits, D. (1980) The Finite Difference Methods in Partial
Differential Equations. vViley: New York.
Iviorozov, V. (1984) Regula1·ization Methods for Solving In1properly Posed
Problems. Springer: New-York-Berlin-Heidelberg.
Morse, P. and Feshbach H. (19.53) Methods of Theoretical Physics. Volmnes
1,2. McGraw Hill: New York.
Morton, K. and Mayers, D. ( 1994) Numerical Solution of Partial Differential
Equations. An Introduction. Ca111bridge University Press: Cambridge.
Ortega, Y. and Poole, vV. (1981) An Introduction to Nun1erical Iviethods
for Differential Equations. Pitn1an: London.
Prikazchikov, V. ( 196.5) A difference proble111 on eigenvalues of an elliptic
operator. Zh. Vychisl. Mat. i Mat. Fiz., .5, 648-6.57 (in Russian); English
transl. in USSR Comput. Iviathen1. and Mathe1n. Physics.
Richtmyer, R. ( 19.57) Difference l!Iethocls for Initial-Value Proble1ns. Inter-
science: New York.
Richtmyer, R. (1978) Principles of Advanced Mathe111atical Physics. Vol-
ume 1. Springer: New York-Berlin-Heidelberg.