6.1 • COMPLEX INTEGRALS 19 5
We can evaluate each of the integrals via integration by parts. For example,
)
t=lf
(~ et cos tdt = ( et sin t - f !f; sin tetdt
lo ___.. .., lo ._.,
u dv u v t=O v du
= (e!f; sin~ - e^0 sinO) -1! e'sintdt
= e•. -1lf et sintdt
o ~
u dv
=ei-(~[~])
= e'. - 1 - 1'!;
0
e'costdt.
t=~
+ 1 lf -coste'dt
o ~
t=O v du
Adding J 0 i et cos tdt to both sides of this equation and then dividing by 2 gives
fo!f; e' cos tdt =! (elf - 1). Likewise, i fo!f; e' sin tdt = ~ (elf + 1). Therefore,
Complex integrals have properties that are similar to those of real integrals.
We now trace through several commonalities. Let f ( t) = u ( t) + iv ( t) and
g (t) = p(t) + iq (t) be conti.nuous on a S t Sb.
- Using Definition ( 6-1), we can easily show that the integral of their sum is
the sum of their integrals, that is,
1b [I (t) + g(t)Jdt = 1b I (t)dt + 1b g(t)dt. (6-3)
- If we divide the interval a S t S b into a S t S c and c S t :::; b and integrate
f (t) over these subintervals by using Definition (6-1), then we get
1b f(t)dt= 1c f(t)dt+ lb f(t)dt. (6-4)
- Similarly, if c +id denotes a complex constant, then
1b (c+id)f(t)dt = (c+ id) 1b f(t)dt. (6-5)