1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
6.3 • THE CAUCHY- GOURSAT THEOREM 227

y y

(a) The figure eight contour C. (b) The contours C 1 and Cz.

Figure 6.28 The contour C = Ci + C2.


Solution Again, we use partial fractions to express the integral:


{ z-
2
dz= 2 {~dz- { -
1


  • dz.


le z^2 - z le z l e z - 1

(6-39)

Using the Cauchy- Goursat theorem, Property (6-17), and Corollary 6.1 (with


zo = 0), we compute the value of the first integral on the right side of Equation

(6-39):

2 r ~dz=2 r ~dz+2 r ~dz


l e z le, z le, z

= -21 ~ dz+ O
-c, z

= -2 (211'i) = -471'i.

Similarly, we find that


fdz fdz {dz


- le z -1 = -le, z - 1 - le. z -I

= 0 - 271'i = -271'i.

If we substitute the results of the last two equations into Equation (6-39), we get


1


z-2
--dz = -471'i - 211'i = -611'i.
c z2 - z

-------~EXERCISES FOR SECTION 6.3


  1. Determine the domain of analyticity for the following functions and evaluate
    fct(o) f (z) dz.


(a) f (z) = ,i':w
(b) f (z) = ,2+~•+ 2.
(c) f (z) =tan z.

(d) /(z)=Log(z+5).
Free download pdf