1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1

300 CHAPTER 8 • RESIDUE THEORY



  1. Let f and g have an isolated singularity at z 0. Show that Res[/+ g, zo) =
    Res[f , z o] + Res(g, zo].

  2. Evaluate


dz
(a) J - 4- ·
Cj*"(-l+i) z + 4

(b) I 2 dz.

C i°(i) z(z - 2z+2)

(c) f e;z dz.
ct(o) z +z

(d) J si~z dz
2

_
ct(o) 4z - 7r

(e) J si~z dz.
Ci(O) z + 1

(f) I --/=--.
C {(O) z sm z
d z
(g) I -. 2 -·
C{ (O) Z Sm z


  1. Let f and g be analytic at zo. If f (zo) ::J 0 and g has a simple zero at z 0 ,


then show that Res[~, zo) =: ~::~.


5. Find J (z - 1)-^2 {z^2 + 4) -

1
dz when
c

(a) c = ct (1).
(b) C =Ct (O).


  1. Find J (z^6 +1) -
    1
    dz when
    c


(a) c =er (i).


(b) C =Ct (1; i). Hint: If zo is a singularity of f (z) = z 6 ~
1

, show

that Resjf,zo) = -~zo.

Free download pdf