342 CHAPTER 9 • Z·TRANSFORMS AND APPLICATIONS
Solution
Remark 9.4
When using the residue theorem to compute inverse z·transforms, the complex
form is preferred; i.e.,
z (2z -eia -e-ia)
3[xn] = 2 ( z - e•a. ) ( z - e-•a · )'
9.1. 3 T able of z-transform s
We list the following table of z..transforms. This table can also be used to find
the inverse z..transform.
Sequence z..transform
1 .5[n] 1
2 u[n) z-1 z
3 bn •z -b
4 b»-^1 u [n - l j z-b^1
5 e<>n z-ez 0
6 n (z-1)z 2
7 n2 $W l
8 nbn (•-bl' bz
9 ne'm •••
<·-·· >"
10 sin( an)
i(-l+e"•}z
2(e'•-z)(-l+e<• •)
11 bn sin( an)
ib -l+e'lio z
2 be••->)(-b+e •z)
12 cos( an)
13 bn cos( an)
Table 9.1 z-transforms of some common sequences.