1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
9.2 • SECOND-ORDER HOMOGENEOUS DIFFERENCE EQUATIONS 367

Calculate the residues for f(z) = Y(z)zn-l
poles

2z3 n- 1 t th
(z+i)(z-i)(z+i)z a e

2z^3

Res[/(z), -1) = lim ( 2 ) zn-I = (- 1)",

z~-1 z ·+ l

R es [/( z ) ,i ") = li m( l)( 2z3 .)z n-1 = (1 - i)·n d

2
+ -
2
i ,an
z-• Z + z +i
2 3 1.
Res[/(z), -i) = lim. ( ;( .) zn-I = (-
2




    • 2




i )(- i)".
·-- · z + 1 z - i

Thus the solution is

y [ n I = -( ) 1 n ( + -^1 + -i ) i ·n + ( -^1 - -i ) ( - i ")n

2 2 2 2 '

which can be rewritten as

y[n] = (-l)n + ~(i" + (-i)")-;i(in- (- i)")

= ein" + ~(eiT' + e=-i?) - ;i (el.¥ -e=-i?)

'Ir. 'Ir

= cos(7rn)] + cos(

2


n) - sin( 2n).

• EXAMPLE 9. 19 Solve y[n + 2) - yl2y[n + l ] + y[n) = 0 with y[O) = 2 and

y[l] = V2.


Solution Take the z-transforms of each term and get

z^2 (Y(z) - 2-v'2z-^1 ) - v'2(z(Y(z) - 2)) + (Y(z)) = 0.


Solve for Y(z) and get Y(z) =^2 :2- 2z = 2•
2


  • 2•.
    z2- 2 z+l z-!±! .,,.. (z-7z 1- •


Calculate the residues for /(z) = Y(z)zn-I at the poles 1ji and 1Tz:


R [/() l+i 1 _ 1. 2z


2
es z --- 1m -v'2zn. z _^1 _ 1 +- --i(l--+i)n-l_ ( l +- --i)"
' J2 ·-17. z - Ti J2 V2 J2

Similarly, Res[f(z), lTzJ = Res[/(z), lTzJ = ( ~ r = ( ~ f. Therefore, the
solution is


y[n]= (_i^1 + ")n + (1 ~ ")"
J2 J2 '

Free download pdf