1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
T(x, O} = 0,

T(x, O} = O,
T(x, y) = 100,

11.5 • STEADY STATE TEMPERATURES 455

for x > l;
for x < - 1;
if z = e'^8 , 0 < 8 < 1r.


  1. Find the temperature function T (x, y) in the domain 1 < r < 2, 0 < (} < ~ that
    satisfies the following boundary conditions (shown in Figure 11.27).


·9 1r
for x + i y = z = e' , 0 < 8 < 2;
·9 1r
for x + iy = z = 2e' , 0 < 8 < - ;
2

T(x, y) = 0 ,
T(x, y) = 50,
8T
on = Tv (x, 0) = 0, for^1 < x < 2;
8T
f}n = T" (0, y) = 0, for^1 < y < 2.

2i
iJT -O
iJn -

y

Figure 11.27

iJT 2


  • iJ11 - o -


x


  1. Find the temperature function T (x, y) in the domain 0 < r < 1, 0 < Arg z < Ct
    that satisfies the following boundary conditions (shown in Figure 11.28). Hint:
    Use w =Log z.


T (x, 0) = 100,


T (x, y) = 50 ,

8T


  • = 0
    &n '


y

0 T= 100
Figure 11. 28

for 0 < x < l;
forx+iy= z = re"", O<r<l;
for x + iy = z = e^19 , 0 < (} < Ct.
Free download pdf