1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
11. 5 • STEADY STATE TEMPERATURES 457


  1. Find the temperature function T (x, y) in the upper half-plane Im (z) > 0 that
    satisfies t he following boundary conditions (shown in Figure 11.31).


T(x, 0) = 100
T(x, 0) = -100
{}T
&n = Ty (x, 0) = 0
l:JT
(}n = T 11 (x, 0) = 0

y

for 0 < x < 1;
for - 1 < x < O;
for x > l;

forx<-1.


ar -oT=- 100 T=looar - o
an - an -

Figure 11.31


  1. Find the temperature function T (x, y) in the first quadrant x > 0, y > 0 that
    satisfies the following boundary conditions (shown in Figure 11.32).


T(x, 0) = 50,
T(O, y) = - 50,
{}T
&n = Tx (0, y) = 0,

ar _
an -^0

y

0 T=SO

Figure 11. 32


  1. For the temperature function


for x > O;
fory > l ;
for 0 < y < 1.

T (x, y) = 1 00--^100 Arctan 1 - x^2 -^2
2

y
11' y
Free download pdf