490 CHAPTER. 11 • APPLICATIONS OF HARMONIC FUNCTIONS
v
Figure 11. 72 The region of interest.
- 'Tr 11
Using the image values f ( -1) =
2
and f ( 1) = '2, we obtain the system
- 11 - i11 n in
2 = A -
2
-+B and '2=A-z+B,
which we can solve to obtain B = 0 and A = -i. Hence the required function is
f (z) = Arcsinz.
•EXAMPLE 11. 27 Verify that w = f (z) = (z^2 - l) t maps the upper half-
plane Im (z) > 0 onto the upper half-plane Im (w) > 0 slit along the segment
from 0 to i. (Use the principal square root t hroughout.)
Solution If we choose x 1 = -l,x2 = O,x3 = 1, w 1 = -d,w2 = i , and w3 = d,
then the formula
~ ~ ~
g' (z) = A (z + 1) • (z) • (z - 1) •
will determine a mapping w = g (z) from the upper half-plane Im {z) > 0 onto
the portion of the upper half-plane Im (w) > 0 that lies outside the triangle with
vertices ± d, i as indicated in Figure 11.73(a). If d--+ 0, then w 1 --+ 0, W3 -+ 0,
v v
u
Figure 11.73 The regions of interest.