12.3 • VIBRATIONS IN MECHANICAL SYSTEMS 535
-------~EXERCISES FOR SECTION 12.3
For t hese exercises, use the results of Section 12.1.
- Find the general solut ion to U" (t) + 3U' (t) + U (t) = F (t).
(a) F(t) = ~·
00 ( 1 )"+!
(b) F(t)= .. ~
1
~n-l cos((2n- l)t].
(c) F(t) is shown in F igure 12.20.
{
7f - t,
F(t)= t ,
- 'lf - t
for ~ $ t $ n;
for - 2 ~ $ t $ ~;
for -n<t< - 2 ...
Hint: F(t) = ~ E <:-^1 l; 2 sin[(2j- l)t].
7f j s l {2J - 1)
s
s = F(t)
Figure 12.20
- Find the general solution to 2U" (t ) + 2U' (t) + U (t) = F (t).
t
3. F(t) =
2
.
00 1
4. F(t)= z::-
2
-sin[(2n- l)t].
n = l n - 1
- F (t) is shown in F igure 12.21.
s
1t
Figure 12.2 1