1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
12.4 • THE FOURIER TRANSFORM 539

Table 12.1 gives some important properties of the Fourier transform.

Linearity
Symmetry
Time scaling
T ime shifting
Frequency shifting
Time differentiation
Frequency differentiation
Moment theorem

i (aU1 (t) + bU2 (t)) = ai(u1 (t)) + bJ(U2 (t))
If i(u (t)) = F (w), then i(F (t)) = i,.U (-w).
J (U (at))= ~F (!£)
J (U (t - to))= e-itow F (w)
J(e-iwotu(t)) =F(w-wo)
i (U' (t) ) = iwF(w)
d"fw~w) = i((-it)" U (t))

If M n = J~ 00 tnU (t) dt, then (-i)" M,. = 21f p(n) (0).

Table 12.1 Properties of the Fourier Transform


1

• EXAMPLE 12.5 Show that F (e-ltl) = ( 2 ).

1f 1 +w


Solution Using Equation (12- 25), we obtain


= 1 1° e(l-iw)tdt + 1 1"° e<- I - iw)tdt

21f -oo 21f 0

= 1. e<I-iw)t + 1. e(- 1- iw)t


l

t=O 1 t=oo

21f (1 -iw) t =-oo 21f (- 1 -iw) t=O
1 1 1
= 21f(l-iw) + 21f(l+iw) = 1f(l+w2)'

establishing the result.


•EXAMPLE 1 2. 6 Show that J (~ 2 ) = ~e-lwl.
1 + t 2
Free download pdf