1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1

560 CHAPTER 12 • FOURJER SERIES AND THE LAPLACE TRANSFORM


82 - b2
•EXAMPLE12. 21 Showthat.C(tcosbt)= 2.
(s2 + b2)

S olution If we let f (t) = cosbt, then F (s) = .C (cosbt) = 2


8
L'>. Hence we
s +v-
can differentiate F ( s) to obtain the desired result:

.C (tcosbt) = -F' (s) =

s^2 + b^2 - 2s^2 s^2 - b^2
=
(s2 + />2)2 (s2 + b2) ·


  • EXAMPLE 12.22 Show that .C ( si: t) = Arctan~.


Solution We let f (t) =sin t and F (s) = +-· Because lim sin t = 1, we
8 + l t-+O+ t
can integrate F ( s) to obtain the desired result:


C ( ~. t) = J. ~ = -Arctan- = Arctan-.


00
d 11"=

00
1
t • Cl + 1 Cl <1=• s

Some types of differential equations involve the terms ty' (t) or ty" (t). We can
use Laplace transforms to find the solution if we use the additional substitutions

C (ty' (t)) = -sY' (s) - Y (s), and (12-32)

.C (ty" (t)) = - s^2 Y' (s) - 2sY (s) + y (0). (12-33)
Free download pdf