1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
Section 8.1. Calculation of Residues: page 299

la. 1.

le. 1.

le. 1.


lg. o.


li. e.

lk. o.

lm. 4.


3a. ,,. 1 i"


3c. (1 - cos 1) 2 7ri.

3e. i27r sinh 1.

3g. 21r 3 i

(^5) a. -2541ri.
7a. -"//'.
(^9) a. •+l l - z+2 l ·
9c. Z2 l -^2 ; + z +4^3.
9 0^2 I^2


· -;::} + (z- 1)2 - (z-1)" ·

ANSWERS 607

ll. By T heorem 8.2 we have Res(g, n] = lim (z - n) g (z), wheren is any integer.

z -n
Since g(z) = 7rf (z)cot7rz = 7rf (z) ~~l;;l, and because/, is analytic at n,

we use L'H6pit al's rule to get }~ si~C,;:J = 1. Explain how this gives the

result.

Section 8.2. Trigonometric Integrals: page 305

1.
,,.
2 ·
3.
,,.
2 ·
5.
,,.
4 ·

7.^532 ,,..


9.
,,.
18.
Free download pdf