- ~·
- 1r.
- ~·
- 7r (1-~).
13. 1f (1 - cos 1).
15. 'Ir.
Section 8.6. Integrands with Branch Points: page 326
(^1). v'321'.
- nln2.
(^7) · (l$i;1ra·
- 'Ir •
..;-; - 2./2.
ANSWERS 609
Section 8. 7. The Argument Principle and Rouche's Theorem: page
335
la. 1.
le. 5.
3a. Let f (z) = 15. Then I/ (z) + g (z)I = lz^5 + 4zl < 6 < I/ (z)I. As f has no
roots in D 1 (0), neither does g by Rouche's theorem.
Sa. Let f (z) = -6z^2. Then If (z) + g (z)I = lz^5 + 2z + 11. It is easy to show
that I/ (z) + g (z)I < I/ (z)I for z E C1 (0). Complete the details.
7a. Let f (z) = 7. Then If (z) + g (z)I ~ 6 < If (z)I. Show the details and
explain why this gives the conclusion you want.
9. Let f (z) = zn. T hen I/ (z) + g (z)I = lh (z)I < 1 = I/ (z)I. Complete the
argument.
Section 9.1. The z-transform: page 355
la. X (z) = I:~=o (!)"' z-n = I:~=o ( 2 ~)" = 1 /(1- 21 ,) = .~
4
.