1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
ANS\VERS 615

Sect ion 10. 1. Basic Properties of Conformal Mappings: page 401


la. All z.


le. All z except z = - 1.

l e. All z except z = 0.

3. f' (1) = l,a = Argf' (1) = 0, If' (l)I = 1;

f' (1 + i) =! -~.a= Argf' (1 + i) = 7 , If' (1 + i)I = Yj.;
!' (i) = -i,a = Argf' (i) =^3 ;, If' (i)I = 1.


  1. f' (~ + i) = -isinh 1, a = Argf' (~ + i) = -; , I f' (j + i) I = sinh 1;


f' (j + i) = -isinhl,a = Argf' (j +i) = - 2 " .If'(~ +i) I = sinh 1;

f' (O) = l,a = Argf' (0) = O,I !' (O)I = 1.


7. I!' (a+ ib)I = 12 v'~+ibl = 2 (a>+t>it•/4l =F 0, hence f (z) is conformal at

z = a+ ib. The lines z 1 (t) = a+ (b + t)i and, z 2 (t) = (a+ t) + ib intersect

orthogonally at the point z 1 (0) = z2(0) = a + ib, therefore, their image

curves will intersect orthogonally at the point v'ii'+ii).

9. lf'(a+ib)I = lcos(a+ib)I = Jcos^2 acosh^2 b+sin^2 asinh^2 b =F 0, hence

f (z) is conformal at z =a+ ib. The lines z 1 (t) =a+ ti and z2(t) =a+ t
intersect orthogonally at t he point z 1 (0) = z2(0) =a; therefore, their image
curves will intersect orthogonally at the point sin (a + ib).


  1. First show that the mapping W = Z preserves the magnitude, but reverses
    the sense, of angles at Z 0 • Then consider the mapping w = f (z) as a
    composition.


Sectio n 10.2. Bilinear Transformations : page 409

(^1) • Z -- s- '( W ) -- (l+i)w-2w:'f2 - 1-i) -- (1-i)(l-w) i+w ·




  1. T he disk lwl < 1.




  2. The region lwl > 1.




  3. w = S(z) =-:~ii·




  4. w = S(z) = ;7;.




  5. The disk lwl < 1.




  6. The portion of the disk lwl < 1 that lies in t he upper half-plane Imw > 0.




  7. The region that lies exterior to both the circles lw -! I =! and lw - ~I =!.



Free download pdf