1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
2.1 • FUNCTIONS AND LINEAR. MAPPINGS 61

y

"'=f(l)
--

Figure 2.11 The mapping w = f (z) = (-1 + i) z- 2 + 3i.


-------~EXERCISES FOR SECTION 2.1



  1. Find f (1 + i} for the following functions.
    (a) f(z) =z+z-^2 +5.
    (b) I (z) = ,2~ 1.
    (c) f (z) = f(x+i y) =x+y+i(x^3 y - y^2 ).
    (d) f(z)=z^2 +4zz-5Re(z)+Im(z}.


v


  1. Let f (z} = z^21 - 5z^7 + 9z^4 • Use polar coordinates to find


(a) /(- 1 +i).
(b) I (1 + i\1'3).


  1. Express the following functions in the form u(x, y} +iv(x, y).


(a) f (z) = z^3 •
(b) f(z) = z^2 +(2- 3i)z.

(c) f (z) =fr.


  1. Express the following functions in the polar coordinate form u (r, 8) +iv (r, 8).


(a) f(z) = zs +:zs.
(b) f(z) = z5 +:zs.
(c} Fbr what values of z are the above expressions valid? Why?


  1. Let f (z) = f (x + iy} = e"' cosy+ ie"' sin y. Find
    (a) /(0).
    (b) I (i,,.}.

Free download pdf