1549380232-Automorphic_Forms_and_Applications__Sarnak_

(jair2018) #1

174 J.W. COGDELL, £-FUNCTIONS FOR GLn



  1. ___ , Remarks on Rankin-Selberg convolutions. Contributions to Automor-
    phic Forms, Geometry and Number Theory (Shalikafest 2002) (H. Hida, D.
    Ramakrishnan, and F. Shahidi, eds.), Johns Hopkins University Press, Balti-
    more, to appear.

  2. ___ , L-functions for GLn, in progress.

  3. K. Doi and H. Naganuma, On the functional equation of certain Dirichlet
    series. Invent. math. 9 (1969), 1-14.

  4. D. F lath, Decomposition of re presentations into tensor products. Proc. Sym-
    pos. Pure Math. 33 , part 1, (1979), 179 - 183.

  5. S. Friedberg and D. Goldberg, On local coefficients for non-generic represen-
    tations of some classical groups. Compositio Math. 116 (1999), 133 - 166.

  6. H. Garland, Eisenstein series on arithmetic quotients of loop groups. Math.
    Research Letters 6 (1999), 723- 733.

  7. ___ , Certain Eisenstein series on loop groups: Convergence and the con-
    stant term. Preprint (2002).

  8. S. Gelbart and H. Jacquet, A relation between automorphic representations
    of GL(2) and GL(3). Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), 471 - 542.

  9. S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-functions,
    Academic Press, San Diego, 1988.

  10. ___ , Boundedness of automorphic L-functions in vertical strips. J. Amer.
    Math. Soc. 14 (2001), 79 - 107.

  11. I.M. Gelfand, M.I. Graev, and I.I. Piatetski-Shapiro, Representation Theory
    and Automorphic Functions, Academic Press, San Diego, 1990.

  12. I.M. Gelfand and D .A. Kazhdan, R epresentations of GL(n, K) where K is
    a local field. Li e Groups and Their Representations (I.M. Gelfand, ed.) John
    Wiley & Sons, New York- Toronto, 1971 , 95 - 118.

  13. S.I. Gelfand, Representations of the general linear group over a finite field. Lie
    Groups and Their Representations (I.M. Gelfand, ed.), John Wiley & Sons,
    New York- Toronto, 1971 , 119- 132.

  14. D. Ginzburg, S. Rallis, and D. Soudry, Generic automorphic forms on


S0(2n + 1): functorial lift to GL(2n), endoscopy, and base change. Inter-


nat. Math. Res. Notices 2001 , no. 14, 729 - 764.


  1. R. Godement, Notes on J acquet-Langlands' Theory. The Institute for Ad-
    vanced Study, 1970.

  2. R. Godement and H. J acquet, Zeta Functions of Simple Algebras, Springer
    Lecture Notes in Mathematics, No.260, Springer-Verlag, Berlin, 1972.

  3. M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple
    Shimura Varieties, Annals of Math. Studies No. 151 , Princeton University
    Press, Princeton, 2001.

  4. E. Hecke, Uber die Bestimmung Dirichletscher Reihen durch ihre Funktional-
    gleichung. Math. Ann. 112 (1936), 664 - 699.

  5. ___ , Mathematische Werke, Vandenhoeck & Ruprecht, Gottingen, 1959.

  6. G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur
    un corps p-adique. Invent. Math. 139 (2000), 439 - 455.

  7. H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions.
    GAFA 2000 (Tel Aviv , 1999), Geom. Funct. Anal. 2000 , Special Volume,
    Part II, 70 5-7 41.

Free download pdf