288 PH. MICHEL, ANALYTIC NUMBER THEORY AND FAMILIES OF £-FUNCTIONS
[DFI8] Duke, W., Friedlander, J. et Iwaniec, H.: The subconvexity problem for
Artin L-functions, Invent. math. 149 (2002) 3, 489-577.
[DK] Duke, W. and Kowalski, E.: A problem of Linnik for elliptic curves and
mean-value estimates for automorphic representations. With an appendix
by Dinakar Ramakrishnan., Invent. math. 139 (2000), 1-39.
[DSP] Duke, W.; Schulze-Pillot, R. Representation of integers by positive ternary
quadratic forms and equidistribution of lattice points on ellipsoids. Invent.
Math. 99, No.I, 49-57 (1990).
[El] Ellenberg, J.; On the average number of octahedral modular forms Math.
Res. Lett. 10 (2003), no. 2-3, 269-273.
[Fol] Fouvry, E.; Autour du theoreme de Bombieri-Vinogradov. Acta Math. 152,
219-244 (1984).
[Fo2] Fouvry, E.; Autour du theoreme de Bombieri-Vinogradov. Ann. Scient. Ee.
Norm. Sup. (4) (20) (1987), 617-640.
[Foll] Fouvry, E.; Iwaniec, H. On a theorem of Bombieri-Vinogradov type. Math-
ematika 27 (1980), 135-152. -
[FoI2] Fouvry, E.; Iwaniec, H. Primes in arithmetic progressions. Acta Arith-
metica 42 (1983), 197-218.
[FoI3] Fouvry, E.; Iwaniec, H. A subconvexity bound for Hecke £-functions. Ann.
Sci. E.cole Norm. Sup. (4) 34 (2001), no. 5, 669-683.
[Fr] Friedlander, J. B., Bounds for L-functions. Proceedings of the Interna-
tional Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 363-373,
Birkhauser, Basel, 1995.
[Ge] S. Gelbart Automorphic forms on adele groups. Annals of Mathematics
Studies. No.83. Princeton, N. J.: Princeton University Press and Univer-
sity of Tokyo Press. X, 267 p. $ 9.00 (1975).
[GeJl] S. Gelbart and H. Jacquet,A relation between automorphic representations
ofGL(2) and GL(3), Ann. Sci. Ecole Norm. Sup. (4) 11(1978), 471-552.
[GeSh] S. Gelbart, Shahidi, F., Boundeness of automorphic £-functions in vertical
strips, J. Amer. Math. Soc. 14 (2001), 79-107.
[GoJ] Godement, R.; Jacquet, H., Zeta functions of simple algebras. Lecture
Notes in Mathematics. 260. Berlin-Heidelberg-New York: Springer-
Verlag. VIII, 188 p. (1972).
[Gol] Goldfeld, D., A simple proof of Siegel's theorem. Proc. Nat. Acad. Sci.
U.S.A. 71 (1974), 1055.
[Go2] Goldfeld, D., The class number of quadratic fields and the conjecture of
Birch and Swinnerton-Dyer. Ann. Sc. norm. super. Pisa, Cl. Sci., IV. Ser. 3,
623-663 (1976).
- Go3 Goldfeld, D.,The Gauss class number problem for imaginary quadratic
fields. Heegner points and Rankin £-series, 25-36, Math. Sci. Res. Inst.
Publ., 49, Cambridge Univ. Press, Cambridge, 2004.
[GH] Goldfeld, D.; Hoffstein, J. On the number of Fourier coefficients that deter-
mine a modular form. [CA] Knopp, Marvin (ed.) et al., A tribute to Emil
Grosswald: number theory and related analysis. Providence, RI: Ameri-
can Mathematical Society. Contemp. Math. 143, 385-393 (1993). [ISBN
0-8218-5155-1/pbk]
[GHL] Goldfeld, D., Hoffstein J. , Lieman, D., Appendix: An effective zero-free
region Ann. Math. (2) 140 , No.I, 177-181 (1994).