1549380232-Automorphic_Forms_and_Applications__Sarnak_

(jair2018) #1
BIBLIOGRAPHY 289

[GL] Goldfeld, D., Lieman, D., Effective bounds on the size of the Tate-
Shafarevich group. Math. Res. Lett. 3 (1996), no. 3, 309-318.
[GS] Goldfeld, Dorian; Szpiro, Lucien Bounds for the order of the Tate-
Shafarevich group. Compos. Math. 97 , No.1-2, 71-87 (1995).
[Go] Good, A. Cusp forms and eigenfunctions of the Laplacian. Math. Ann. 255
(1981), no. 4, 523-548.
[GR] Graham, S.W.; Ringrose, C.J. Lower bounds for least quadratic non-
residues. Analytic number theory, Proc. Conf. in Honor of Paul T. Bate-
man, Urbana/IL (USA) 1989 , Prog. Math. 85 , 269-309 (1990).
[GrS] Granville, A., Soundararajan K.: The distribution of value of L (l , x),
Geom. Funct. Anal. 13 (2003), no. 5, 992-1028.
[Gr] B. Gross, Heights and the special values of L-series. Number theory (Mon-
treal, Que., 1985), 115-187, CMS Conf. Proc. 7, Amer. Math. Soc., Prov-
idence, RI, 1987.
[GK] Gross, Benedict H.; Kudla, Stephen S. Heights and the central critical
values of triple product L-functions. Compos. Math. 81, No.2, 143-209
(1992).
[GZ] Gross, B. and Zagier, D. Heegner points and derivatives of L-series, Invent.
Math., 84 (1986), 225-320.
[HJ Hadamard, J., Hadamard, J. Sur la distribution des zeros de la fonction
((s) et ses consequences arithmetiques. S. M. F. Bull. 24, 199-220. (1896)
[Hal] Harcos, G. Uniform approximate functional equation for principal L-
functions. Int. Math. Res. Not. 2002 , no. 18 , 923-932.
[Ha2] Harcos, G.,An additive problem in the Fourier coefficients of Maass forms,
Math. Ann. 326 (2003), no. 2, 347-365.
[HM] Harcos, G., Michel, Ph., The subconvexity problem for Rankin-Selberg L-
functions and equidistribution of Heegner points. II. Invent. Math. 163
(2006), no. 3, 581-655.
[HK] ·Harris, Michael; Kudla, Stephen S. The central critical value of a triple
product L-function. Ann. Math. (2) 133, No.3, 605-672 (1991).
[HB] D. R. Heath-Brown. A mean value estimate for real character sums. Acta
Arith. 72 (1995), no. 3, 235-275.
[HB-M] D. R. Heath-Brown and Ph. Michel Exponential in the frequency of ana-
lytic ranks of Automorphic L-functions, Duke Mathematical Journal 102 ,
3, p. 475-484 (2000).
[HL] Hoffstein, J., Lockhart, P., Coefficients of Maass forms and the Siegel zero.
With an appendix by Dorian Goldfield, Hoffstein and Daniel Lieman. Ann.
of Math. (2) 140 (1994), no. 1, 161-181.
[HR] Hoffstein, J.; Ramakrishnan, D. Siegel zeros and cusp forms. Internat.
Math. Res. Notices 1995, no. 6, 279-308.
[Hu] Huxley, M., Oberwolfach lecture, fall 2001.
[HJ] Huxley, M. N.; Jutila, M. Large values of Dirichlet polynomials. Ill. Acta
Arith. 32 (1977), no. 3, 297-312.
[Iv] Ivie, A. The Riemann zeta-function. The theory of the Riemann zeta-
function with applications. A Wiley-Interscience Publication. John Wiley
& Sons, Inc., New York, 1985. xvi+517 pp. ISBN: 0-471-80634-X
[Iv2] Ivie, A. On sums of Hecke series in short intervals. J. Theor. Nombres Bor-
deaux 13 (2001), no. 2, 453-468.

Free download pdf