LECTURE 2. THREE SYlVIMETRIC SPACES 365
r c G ; r = GL(2, 1Fp)
conjugacy clas s e s in r
central { ~ ~ ) , a E lF;
hy p erbolic ( ~ ~ ) ,
a =f. b E lF~
p arabolic ( ~^1 a ) , a E lF* P
elliptic { ~ b! )
a,bElFp,b::/=0,
~=f.u^2 ,uE1Fp
S elberg trace formula
(q = p2)
2= J(7r)mult(7r, Ind~l)
7rEGK
= lr\Gl(P - l)f( Vl)
+ (q+l)(q-1)2 L F(c)
2(p-l)
cEF;
c#l
+ q(q
2
-^1 l {F(l ) -F(v'o)}
+/-1 2 L F(a+bry) a-bry '
a ,bEIFv
b#O
where ry^2 = ~, fJ E 1Fq
Unknown if there is an an alogue of Selberg zeta function
Table 3. Part 2. Trace formula for the the fin ite symmetric spaces.
T he Selberg trace formula provides a correspondence between t he length spec-
trum and the Laplacian spectrum. It thus gives analogues of many of t he explicit
formulas in analytic number theory. There are many applications; e.g. to prove t he
Weyl law for t he number of l>-nl ::; x as x ---) oo. The Weyl law says