1549380232-Automorphic_Forms_and_Applications__Sarnak_

(jair2018) #1

Bibliography



  1. G. Ahumada, Fonctions periodiques et formule des traces de Selberg sur les
    arbres, C. R. Acad. Sci. Paris, 305 (1987), 709-712.

  2. N. Allen, On the spectra of certain graphs arising from finite fields, Finite
    Fields Applies., 4 (1998), 393-440.

  3. J. Angel, Finite upper half planes over finite fields, Finite Fields Applies., 2
    (1996), 62-86.

  4. J. Angel, B. Shook, A. Terras, C. Trimble, Graph spectra for finite upper half
    planes over rings, Linear Algebra and its Applications, 226-228 (1995), 423-
    457.

  5. C. Ballantine, Ramanujan type buildings, Canad. J. Math., 52 (2000), 1121-
    1148.

  6. E. Bannai, Character tables of commutative association schemes, in Finite
    Geometries, Buildings, and Related Topics, (W. M. Kantor, et al, Eds.),
    Clarendon Press, Oxford, 1990 , pp. 105-128.

  7. E. Bannai, 0. Shimabukuro, and H. Tanaka, Finite euclidean graphs and Ra-
    manujan graphs, preprint.

  8. H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internatl. J. Math.,
    3 (1992), 717-797.

  9. C. Beguin, A. Valette, and A. Zuk, On the spectrum of a random walk on the
    discrete Heisenberg group and the norm of Harper's operator, J. of Geometry
    and Physics, 21 (1997), 337-356.

  10. N. Biggs, Algebraic Graph Theory, Cambridge U. Press, Cambridge, 1974.



    1. Bohigas and M.-J. Giannoni, Chaotic motion and random matrix theories,
      Lecture Notes in Physics, 209 , Springer-Verlag, Berlin, 1984, pp. 1-99.





    1. Bohigas, R.U. Haq, and A. Pandey, Fluctuation properties of nuclear energy
      levels and widths: comparison of theory with experiment, in K.H. Bockhoff
      (Ed.), Nuclear Data for Science and Technology, Reidel, Dordrecht, 1983, pp.
      809-813.



  11. B. Bollobas, Modern Graph Theory, Springer-Verlag, N.Y., 1998.

  12. A. Borel and G. D. Mostow, Algebraic Groups and Discontinuous Subgroups,
    Proc. Symp. Pure Math., IX, Amer. Math. Soc., Providence, 1966.

  13. R. Brooks, The spectral geometry of k-regular graphs, J. d'Analyse, 57 (1991),
    120-151.
    371

Free download pdf