1549380232-Automorphic_Forms_and_Applications__Sarnak_

(jair2018) #1

372 AUDREY TERRAS, ARITHMETICAL QUANTUM CHAOS



  1. P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhauser,
    Boston, 1992.

  2. P. Cartier, Harmonic analysis on trees, Proc. Symp. Pure Math., 26, Amer.
    Math. Soc., Providence, 1973, pp. 419-423.

  3. C.-L. Chai and W.-C. W. Li, Character sums and automorphic forms, preprint.

  4. M. D. Choi, G.A. Elliott, and N. Yui, Gauss polynomials and the rotation
    algebra, Inventiones Math., 99 (1990), 225-246.

  5. F. R. Chung, Spectral Graph Theory, Amer. Math. Soc., Providence, 1997.

  6. F. Chung and S. Sternberg, Mathematics and the buckyball, American Scientist,
    81 (1993), 56-71.

  7. B. Cipra, What's Happening in the Mathematical Sciences, 1998-1999, Amer.
    Math. Soc., Providence, RI, 1999.

  8. D .M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Ap-
    plication, Academic, N.Y., 1979.

  9. M. DeDeo, M. Martinez, A. Medrano, M. Minei, H. Stark, and A. Terras,
    Spectra of Heisenberg graphs over finite rings: histograms, zeta functions and
    butterflies, preprint (on the web at http://math.ucsd.edu;-aterras/heis.pdf)..)

  10. J. Elstrodt, Die Selbergsche Spurformel fur kompakte Riemannsche Flachen,
    Jber. d. Dt. Math.-Verein., 83 (1981), 45-77.

  11. J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on Hyperbolic
    Space, Springer-Verlag, Berlin, 1998.

  12. R. Evans, Spherical functions for finite upper half planes with characteristic 2,
    Finite Fields Applies, 3 (1995), 376-394.

  13. K. Feng and W. Li, Spectra of hypergraphs and applications, J. Number Theory,
    60 (1996), 1-22.

  14. A. Figa-Talamanca and C. Nebbia, Harmonic Analysis and Representation
    Theory for Groups acting on Homogeneous Trees, Cambridge U. Press, Cam-
    bridge, 1991.

  15. P. J. Forrester and A. Odlyzko, A nonlinear equation and its application to
    nearest neighbor spacings for zeros of the zeta function and eigenvalues of ran-
    dom matrices, in Proceedings of the Organic Math. Workshop, Invited Articles,
    located at http://www.cecm.sfu.ca;-pborwein/

  16. J. Friedman (Ed.), Expanding Graphs, DIMACS Series in Disc. Math. and Th.
    Comp. Sci., 10 , Amer. Math. Soc., Providence, 1993.

  17. P. Goetgheluck, Fresnel zones on the screen, Experimental Math., 2 (1993),
    301-309.

  18. F. Haake, Quantum Signatures of Chaos, Springer-Verlag, Berlin, 1992.

  19. K. Hashimoto, Zeta functions of finite graphs and representations of p-adic
    groups, Adv. Stud. Pure Math., 15 , Academic, N.Y., 1989, pp. 211-280.

  20. K. Hashimoto, Artin-type L-functions and the density theorem for prime cycles
    on finite graphs, Internatl. J. Math., 3 (1992), 809-826.

  21. D. A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke
    Math. J., 43 (1976), 441-482.

  22. D.A. Hejhal, J. Friedman, M.C. Gutzwiller and A. M. Odlyzko (Eds.), Emerg-
    ing Applications of Number Theory, IMA Volumes in Math. and its Applica-
    tions, 109, Springer-Verlag, N.Y., 1999.

  23. D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in ratio-
    nal and irrational magnetic fields, Phys. Rev. B, 14 (1976), 2239-2249.

Free download pdf