Examples 145
We now extend this derivation to the case ofNparticles in three dimensions, i.e.,
an ideal gas ofNparticles in a cubic box of sideL(volumeV=L^3 ), for which the
Hamiltonian is
H=
∑N
i=1
p^2 i
2 m
. (4.5.5)
Since each momentum vectorpihas three components, we may also write the Hamil-
tonian as
H=
∑N
i=1
∑^3
α=1
p^2 αi
2 m
, (4.5.6)
whereα= (x,y,z) indexes the Cartesian components ofpi. The sum in eqn. (4.5.6)
contains 3Nterms. Thus, the partition function is given by
Q(N,V,T) =
1
N!h^3 N
∫
D(V)
dNr
∫
dNpexp
[
−β
∑N
i=1
p^2 i
2 m
]
. (4.5.7)
Since the Hamiltonian is separable in the each of theN coordinates and momenta,
the partition function can be simplified according to
Q(N,V,T) =
1
N!
[
1
h^3
∫
D(V)
dr 1
∫
dp 1 e−βp
(^21) / 2 m
][
1
h^3
∫
D(V)
dr 2
∫
dp 2 e−βp
(^22) / 2 m
]
···
[
1
h^3
∫
D(V)
drN
∫
dpNe−βp
(^2) N/ 2 m
]
. (4.5.8)
Since each integral in brackets is the same, we can write eqn. (4.5.8)as
Q(N,V,T) =
1
N!
[
1
h^3
∫
D(V)
dr
∫
dpe−βp
(^2) / 2 m
]N
. (4.5.9)
The six-dimensional integral in brackets is just
1
h^3
∫
D(V)
dr
∫
dpe−βp
(^2) / 2 m
1
h^3
∫L
0
dx
∫L
0
dy
∫L
0
dz
×
∫∞
−∞
dpxe−βp
(^2) x/ 2 m
∫∞
−∞
dpye−βp
(^2) y/ 2 m
∫∞
−∞
dpze−βp
(^2) z/ 2 m
. (4.5.10)
Eqn. (4.5.10) can also be written as
1
h^3
∫
D(V)
dr
∫
dpe−βp
(^2) / 2 m
[
1
h
∫L
0
dx
∫∞
−∞
dpe−βp
(^2) / 2 m