Examples 145We now extend this derivation to the case ofNparticles in three dimensions, i.e.,
an ideal gas ofNparticles in a cubic box of sideL(volumeV=L^3 ), for which the
Hamiltonian is
H=∑N
i=1p^2 i
2 m. (4.5.5)
Since each momentum vectorpihas three components, we may also write the Hamil-
tonian as
H=∑N
i=1∑^3
α=1p^2 αi
2 m, (4.5.6)
whereα= (x,y,z) indexes the Cartesian components ofpi. The sum in eqn. (4.5.6)
contains 3Nterms. Thus, the partition function is given by
Q(N,V,T) =
1
N!h^3 N∫
D(V)dNr∫
dNpexp[
−β∑N
i=1p^2 i
2 m]
. (4.5.7)
Since the Hamiltonian is separable in the each of theN coordinates and momenta,
the partition function can be simplified according to
Q(N,V,T) =
1
N!
[
1
h^3∫
D(V)dr 1∫
dp 1 e−βp(^21) / 2 m
][
1
h^3∫
D(V)dr 2∫
dp 2 e−βp(^22) / 2 m
]
···
[
1
h^3∫
D(V)drN∫
dpNe−βp(^2) N/ 2 m
]
. (4.5.8)
Since each integral in brackets is the same, we can write eqn. (4.5.8)as
Q(N,V,T) =
1
N!
[
1
h^3∫
D(V)dr∫
dpe−βp(^2) / 2 m
]N
. (4.5.9)
The six-dimensional integral in brackets is just
1
h^3∫
D(V)dr∫
dpe−βp(^2) / 2 m
1
h^3∫L
0dx∫L
0dy∫L
0dz×
∫∞
−∞dpxe−βp(^2) x/ 2 m
∫∞
−∞dpye−βp(^2) y/ 2 m
∫∞
−∞dpze−βp(^2) z/ 2 m
. (4.5.10)
Eqn. (4.5.10) can also be written as
1
h^3∫
D(V)dr∫
dpe−βp(^2) / 2 m
[
1
h∫L
0dx∫∞
−∞dpe−βp(^2) / 2 m