1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Examples 151

In order to illustrate how the recursive inverse works, consider the special case of
N= 3. If we setk= 3 in eqn. (4.5.39), we find


r 3 =u 3 +

3


4


r′+

1


4


r, (4.5.40)

where the fact thatr 4 =r′has been used. Next, settingk= 2,


r 2 =u 2 +

2


3


r 3 +

1


3


r

=u 2 +

2


3


[


u 3 +

3


4


r′+

1


4


r

]


+


1


3


r

=u 2 +

2


3


u 3 +

1


2


r′+

1


2


r (4.5.41)

and similarly, we find that


r 1 =u 1 +

1


2


u 2 +

1


3


u 3 +

1


4


r′+

3


4


r. (4.5.42)

Thus, if we now use these relations to evaluate (r′−r 3 )^2 +(r 3 −r 2 )^2 +(r 2 −r 1 )^2 +(r 1 −r)^2 ,
after some algebra, we find


(r′−r 3 )^2 +(r 3 −r 2 )^2 +(r 2 −r 1 )^2 +(r 1 −r)^2 = 2u^21 +

3


2


u^22 +

4


3


u^23 +

1


4


(r−r′)^2 .(4.5.43)

Extrapolating to arbitraryN, we have


∑N

i=0

(ri−ri+1)^2 =

∑N


i=1

i+ 1
i

u^2 i+

1


N+ 1


(r−r′)^2. (4.5.44)

Finally, since the variable transformation must be applied to a multidimensional in-
tegral, we need to compute the Jacobian of the transformation. Consider, again, the
special case ofN= 3. For any of the spatial directionsα=x,y,z, the Jacobian matrix
Jij=∂rα,i/∂uα,jis


J =




1 1/2 1/ 3


0 1 2/ 3


0 0 1



. (4.5.45)


This matrix, being both upper triangular and having 1s on the diagonal, has unit
determinant, a fact that generalizes to arbitraryN, where the Jacobian matrix takes
the form


J =


     


1 1/2 1/3 1/ 4 ··· 1 /N


0 1 2/3 2/ 4 ··· 2 /N


0 0 1 3/ 4 ··· 3 /N


..


.


..


.


..


.


..


. ···


..


.


0 0 0 0 ··· 1


     


. (4.5.46)

Free download pdf