1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

152 Canonical ensemble


Thus, substituting the transformation into eqn. (4.5.24), we obtain


Q(N,V,T,r,r′) =

1


h^3 N

(


2 πm
β

) 3 N/ 2 ∫


dNuexp

[



1


2


βmω^2

∑N


i=1

i+ 1
i

u^2

]


. (4.5.47)


Now, each of the integrals overu 1 ,...,uNcan be performed independently and straight-
forwardly to give


Q(N,V,T,r,r′) =

1


h^3 N

(


2 πm
β

) 3 N/ 2 (


2 π
βmω^2

) 3 N/ 2


e−βmω

(^2) (r−r′) (^2) /N+1


∏N


i=1

(


i
i+ 1

) 3 / 2


. (4.5.48)


Expanding the product, we find


∏N

i=1

(


i
i+ 1

) 3 / 2


=


(N



i=1

i
i+ 1

) 3 / 2


=


(


1


2


2


3


3


4


···


N− 1


N


N


N+ 1


) 3 / 2


=


(


1


N+ 1


) 3 / 2


. (4.5.49)


Thus, substituting this result into eqn. (4.5.48) yields eqn. (4.5.33).
Finally, let us use the partition function expressions in eqns. (4.5.37)and (4.5.33)
to compute an observable, specifically, the expectation value〈|r−r′|^2 〉, known as the
mean-square end-to-end distanceof the polymer. From eqn. (4.5.35), we can set up
the expectation value as


〈|r−r′|^2 〉=

1


Q(N,V,T)


1


h^6

(


2 π
βhω

) 3 N(


2 πm
β

) 3


×


1


(N+ 1)^3 /^2



drdr′|r−r′|^2 e−βmω

(^2) (r−r′) (^2) /(N+1)


. (4.5.50)


Using the fact that 1/Q(N,V,T) = (λ^3 /V)(βhω/ 2 π)3(N+1), and transforming to
center-of-mass (R) and relative (s) coordinates yields


〈|r−r′|^2 〉=

(


λ^3
V

)(


βhω
2 π

) 3 N+3


1


h^6

(


2 π
βhω

) 3 N(


2 πm
β

) 3


×


1


(N+ 1)^3 /^2



dRds s^2 e−βmω

(^2) s (^2) /(N+1)


. (4.5.51)


The integration overRyields, again, a factor ofV, which cancels theVfactor in the
denominator. For thesintegration, we change to spherical polar coordinates, which
yields

Free download pdf