1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

162 Canonical ensemble


0 2 4 6 8 10


q (Å
-1
)

-1


0


1


2


S
(q

)

100 K


200 K


300 K


400 K


0 2 4 6 8 10


q (Å
-1
)

-1


0


1


2


S
(q

)

213 K


273 K


(a) (b)

Fig. 4.5(a) Structure factors corresponding to the radial distribution functions in Fig. 4.2.
(b) N–N partial structure factors for liquid ammonia at 213 Kand 273 K from Ricciet al.
(1995).


4.6.3 Thermodynamic quantities from the radial distribution function


The spatial distribution functions discussed previously can be usedto express a number
of important thermodynamic properties of a system. Consider first the total internal
energy. In the canonical ensemble, this is given by the thermodynamic derivative


E=−



∂β

lnQ(N,V,T). (4.6.33)

SinceQ(N,V,T) =Z(N,V,T)/(N!λ^3 N), it follows that


E=−



∂β
[lnZ(N,V,T)−lnN!− 3 Nlnλ]. (4.6.34)

Recall thatλis temperature dependent, so that∂λ/∂β=λ/(2β). Thus, the energy is
given by


E=


3 N


λ

∂λ
∂β


∂lnZ
∂β

=


3 N


2


kT−

1


Z


∂Z


∂β

. (4.6.35)


From eqn. (4.6.4), we obtain



1


Z


∂Z


∂β

=


1


Z



dr 1 ···drNU(r 1 ,...,rN)e−βU(r^1 ,....,rN)=〈U〉, (4.6.36)

and the total energy becomes

Free download pdf