1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Spatial distribution functions 167

β
3 V

〈N



i=1

ri·Fi


=


β
6 V



i,j,i 6 =j

rij·fij


=


β
6 V Z


dr 1 ···drN




i,j,i 6 =j

rij·fij


e−βUpair(r^1 ,...,rN). (4.6.64)

As we saw in the derivation of the internal energy, all of the integrals can be made
identical by changing the particle labels. Hence,


β
3 V

〈N



i=1

ri·Fi


=


βN(N−1)
6 V Z


dr 1 ···drNr 12 ·f 12 e−βUpair(r^1 ,...,rN)

=


β
6 V


dr 1 dr 2 r 12 ·f 12

[


N(N−1)


Z



dr 3 ···drNe−βUpair(r^1 ,...,rN)

]


=


β
6 V


dr 1 dr 2 r 12 ·f 12 ρ(2)(r 1 ,r 2 )

=


βN^2
6 V^3


dr 1 dr 2 r 12 ·f 12 g(2)(r 1 ,r 2 ). (4.6.65)

Moreover,


f 12 =−

∂Upair
∂r 12

=−u′(|r 1 −r 2 |)

(r 1 −r 2 )
|r 1 −r 2 |

=−u′(r 12 )

r 12
r 12

, (4.6.66)


whereu′(r) = du/dr, andr 12 =|r 12 |. Substituting eqn. (4.6.66) into the ensemble
average gives


β
3 V

〈N



i=1

ri·Fi


=−


βN^2
6 V^3


dr 1 dr 2 u′(r 12 )r 12 g(2)(r 1 ,r 2 ). (4.6.67)

As was done for the average energy, we change variables using eqn. (4.6.14), which
yields


β
3 V

〈N



i=1

ri·Fi


=−


βN^2
6 V^3


drdRu′(r)rg ̃(2)(r,R)

=−


βN^2
6 V^2


dru′(r)r ̃g(r)

=−


βN^2
6 V^2

∫∞


0

dr 4 πr^3 u′(r)g(r). (4.6.68)

Therefore, the pressure becomes

Free download pdf