1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Simple examples 385

x

y 0 (x)

x

y 3 (x)

x

y 2 (x)

x

y 1 (x)

Fig. 9.1The first four eigenfunctions of a harmonic oscillator.

ˆa=



2 ̄h
ˆx+

i

2 m ̄hω


ˆa†=



2 ̄h

ˆx−

i

2 m ̄hω

p ,ˆ (9.3.25)

which can be shown to satisfy the commutation relation


[ˆa,ˆa†] = 1. (9.3.26)

In terms of these operators, the Hamiltonian can be easily derived with the result


Hˆ=


(


ˆa†ˆa+

1


2


)


̄hω. (9.3.27)

The action of ˆaand ˆa†on the eigenfunctions ofHˆ can be worked out using the fact
that


ˆaψn(x) =

[√


α
2

x+

1



2 α

d
dx

]


ψn(x) (9.3.28)
Free download pdf