Simple examples 385
x
y 0 (x)
x
y 3 (x)
x
y 2 (x)
x
y 1 (x)
Fig. 9.1The first four eigenfunctions of a harmonic oscillator.
ˆa=
√
mω
2 ̄h
ˆx+
i
√
2 m ̄hω
pˆ
ˆa†=
√
mω
2 ̄h
ˆx−
i
√
2 m ̄hω
p ,ˆ (9.3.25)
which can be shown to satisfy the commutation relation
[ˆa,ˆa†] = 1. (9.3.26)
In terms of these operators, the Hamiltonian can be easily derived with the result
Hˆ=
(
ˆa†ˆa+
1
2
)
̄hω. (9.3.27)
The action of ˆaand ˆa†on the eigenfunctions ofHˆ can be worked out using the fact
that
ˆaψn(x) =
[√
α
2
x+
1
√
2 α
d
dx
]
ψn(x) (9.3.28)