Simple examples 385xy 0 (x)xy 3 (x)xy 2 (x)xy 1 (x)Fig. 9.1The first four eigenfunctions of a harmonic oscillator.ˆa=√
mω
2 ̄h
ˆx+i
√
2 m ̄hωpˆˆa†=√
mω
2 ̄hˆx−i
√
2 m ̄hωp ,ˆ (9.3.25)which can be shown to satisfy the commutation relation
[ˆa,ˆa†] = 1. (9.3.26)In terms of these operators, the Hamiltonian can be easily derived with the result
Hˆ=
(
ˆa†ˆa+1
2
)
̄hω. (9.3.27)The action of ˆaand ˆa†on the eigenfunctions ofHˆ can be worked out using the fact
that
ˆaψn(x) =[√
α
2x+1
√
2 αd
dx]
ψn(x) (9.3.28)