424 Quantum ideal gases
an electron from one of the occupied energy levels—is closely relatedto the Fermi
energy.
11.5.3 Zero-temperature thermodynamics
The fact that states of finite energy are occupied even at zero temperature in the
fermion gas means that the thermodynamic properties atT= 0 are nontrivial. Con-
sider, for example, the average particle number. In order to obtain an expression for
this quantity, recall that
〈N〉=
∑
m
∑
n
〈fnm〉=
∑
m
∑
n
θ(εF−εn) =g
∑
n
θ(εF−εn). (11.5.35)
In the thermodynamic limit, the sum may be replaced by an integrationin spherical
polar coordinates
〈N〉=g
∫
dnθ(εF−εn)
= 4πg
∫∞
0
dn n^2 θ(εF−εn). (11.5.36)
However, since the energy eigenvalues are given by
εn=
2 π^2 ̄h^2
mL^2
n^2 , (11.5.37)
it proves useful to change variables of integration fromntoεnusing eqn. (11.5.37):
n=
(
mL^2
2 π^2 ̄h^2
) 1 / 2
ε^1 n/^2
dn=
1
2
(
mL^2
2 π^2 ̄h^2
) 1 / 2
ε−n^1 /^2 dεn. (11.5.38)
Inserting eqn. (11.5.38) into eqn. (11.5.36), we obtain
〈N〉= 4πg
∫∞
0
dn n^2 θ(εF−εn)
= 2πg
(
mL^2
2 π^2 ̄h^2
) 3 / 2 ∫∞
0
dεnε^1 n/^2 θ(εF−εn)
= 2πg
(
mL^2
2 π^2 ̄h^2
) 3 / 2 ∫εF
0
dε ε^1 /^2