The ideal fermion gas 429
Performing the angular integrals, we obtain
ρ 1 (s) =
4 π
V
∫∞
0
dn n^2 θ(εF−εn)
L
2 πins
(
e^2 πins/L−e−^2 πins/L
)
=
4
L^2 s
∫∞
0
dn n θ(εF−εn) sin
(
2 πns
L
)
. (11.5.62)
For the remaining integral overn, transforming fromntoεnis not convenient because
of the sin function in the integrand. However, sincen >0, we recognize that the step
function simply restricts the upper limit of the integral by the condition
2 π^2 ̄h^2
mL^2
n^2 < εF
n <
(
mL^2 εF
2 π^2 ̄h^2
) 1 / 2
≡nF. (11.5.63)
Therefore,
ρ 1 (s) =
4
L^2 s
∫nF
0
dn nsin
(
2 πns
L
)
=
1
π^2 s^3
[
sin
(
2 πnFs
L
)
−
s
lF
cos
(
2 πnFs
L
)]
, (11.5.64)
where
lF=
(
̄h^2
2 mεF
) 1 / 2
. (11.5.65)
Givenρ 1 (s), we can now evaluate the exchange energy. First, we need to transform
from integrations overrandr′to center-of-mass and relative coordinate
R=
1
2
(r+r′), s=r−r′. (11.5.66)
This transformation yields forEx:
Ex=−
1
4
∫
dRds
ρ^21 (s)
s
. (11.5.67)
Integrating overR, transforming thesintegral into spherical polar coordinates, and
performing the angular part of thesintegration gives
Ex=−
V
4
∫
ds
ρ^21 (s)
s
=−πV
∫∞
0
ds sρ^21 (s)