1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
The ideal fermion gas 429

Performing the angular integrals, we obtain


ρ 1 (s) =

4 π
V

∫∞


0

dn n^2 θ(εF−εn)

L


2 πins

(


e^2 πins/L−e−^2 πins/L

)


=


4


L^2 s

∫∞


0

dn n θ(εF−εn) sin

(


2 πns
L

)


. (11.5.62)


For the remaining integral overn, transforming fromntoεnis not convenient because
of the sin function in the integrand. However, sincen >0, we recognize that the step
function simply restricts the upper limit of the integral by the condition


2 π^2 ̄h^2
mL^2

n^2 < εF

n <

(


mL^2 εF
2 π^2 ̄h^2

) 1 / 2


≡nF. (11.5.63)

Therefore,


ρ 1 (s) =

4


L^2 s

∫nF

0

dn nsin

(


2 πns
L

)


=


1


π^2 s^3

[


sin

(


2 πnFs
L

)



s
lF

cos

(


2 πnFs
L

)]


, (11.5.64)


where


lF=

(


̄h^2
2 mεF

) 1 / 2


. (11.5.65)


Givenρ 1 (s), we can now evaluate the exchange energy. First, we need to transform
from integrations overrandr′to center-of-mass and relative coordinate


R=


1


2


(r+r′), s=r−r′. (11.5.66)

This transformation yields forEx:


Ex=−

1


4



dRds

ρ^21 (s)
s

. (11.5.67)


Integrating overR, transforming thesintegral into spherical polar coordinates, and
performing the angular part of thesintegration gives


Ex=−

V


4



ds

ρ^21 (s)
s

=−πV

∫∞


0

ds sρ^21 (s)
Free download pdf