1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Thermodynamics 461

E=−



∂β
lnQ(L,T) =

1


Q(L,T)


∂Q(L,T)


∂β

. (12.3.18)


SinceQ(L,T) is expressible using only cyclic paths, these are all we need to calculate
E. Taking the derivative of eqn. (12.2.26) with respect toβ, we obtain the following
expression for the energy:


E=


1


Q(L,T)


lim
P→∞

(


mP
2 πβ ̄h^2

)P/ 2 ∫


dx 1 ···dxPεP(x 1 ,...,xP)

×exp

{



1


̄h

∑P


k=1

[


mP
2 β ̄h

(xk+1−xk)^2 +

β ̄h
P

U(xk)

]}∣∣





xP+1=x 1

= lim
P→∞
〈εP(x 1 ,...,xP)〉f, (12.3.19)

where


εP(x 1 ,...,xP) =

P


2 β


∑P


k=1

mP
2 β^2 ̄h^2

(xk+1−xk)^2 +

1


P


∑P


k=1

U(xk). (12.3.20)

Therefore,εP(x 1 ,...,xP) is an estimator for the energy, and the average〈Hˆ〉P =
〈ε(x 1 ,...,xP)〉fconverges to the true thermodynamic energyEin the limitP→∞.
Similarly, we can obtain an estimator for the one-dimensional “pressure,” which
we will denote Π, from the thermodynamic relation


Π =kT

∂lnQ
∂L

=


kT
Q

∂Q


∂L


. (12.3.21)


As was done in Section 4.6.3, the one-dimensional “volume”Lis made explicit by
introducing scaled variablessk=xk/Linto the path integral for the partition function,
which yields


Q(L,T) = lim
P→∞

(


mP
2 πβ ̄h^2

)P/ 2


LP



ds 1 ···dsP

×exp

[



1


̄h

∑P


k=1

(


mP
2 β ̄h

L^2 (si+1−si)^2 +
β ̄h
P

U(Lsi)

)]∣∣





sP+1=s 1

. (12.3.22)


Eqn. (12.3.22) can now be differentiated with respect toLand transformed back to
the original path variablesx 1 ,...,xPto yield


Π =


1


Q(L,T)


lim
P→∞

(


mP
2 πβ ̄h^2

)P/ 2 ∫


dx 1 ···dxPPP(x 1 ,...,xP)

×exp

{



1


̄h

∑P


k=1

[


mP
2 β ̄h

(xk+1−xk)^2 +
β ̄h
P

U(xk)

]}∣∣





xP+1=x 1
Free download pdf