Thermodynamics 461
E=−
∂
∂β
lnQ(L,T) =
1
Q(L,T)
∂Q(L,T)
∂β
. (12.3.18)
SinceQ(L,T) is expressible using only cyclic paths, these are all we need to calculate
E. Taking the derivative of eqn. (12.2.26) with respect toβ, we obtain the following
expression for the energy:
E=
1
Q(L,T)
lim
P→∞
(
mP
2 πβ ̄h^2
)P/ 2 ∫
dx 1 ···dxPεP(x 1 ,...,xP)
×exp
{
−
1
̄h
∑P
k=1
[
mP
2 β ̄h
(xk+1−xk)^2 +
β ̄h
P
U(xk)
]}∣∣
∣
∣
∣
xP+1=x 1
= lim
P→∞
〈εP(x 1 ,...,xP)〉f, (12.3.19)
where
εP(x 1 ,...,xP) =
P
2 β
−
∑P
k=1
mP
2 β^2 ̄h^2
(xk+1−xk)^2 +
1
P
∑P
k=1
U(xk). (12.3.20)
Therefore,εP(x 1 ,...,xP) is an estimator for the energy, and the average〈Hˆ〉P =
〈ε(x 1 ,...,xP)〉fconverges to the true thermodynamic energyEin the limitP→∞.
Similarly, we can obtain an estimator for the one-dimensional “pressure,” which
we will denote Π, from the thermodynamic relation
Π =kT
∂lnQ
∂L
=
kT
Q
∂Q
∂L
. (12.3.21)
As was done in Section 4.6.3, the one-dimensional “volume”Lis made explicit by
introducing scaled variablessk=xk/Linto the path integral for the partition function,
which yields
Q(L,T) = lim
P→∞
(
mP
2 πβ ̄h^2
)P/ 2
LP
∫
ds 1 ···dsP
×exp
[
−
1
̄h
∑P
k=1
(
mP
2 β ̄h
L^2 (si+1−si)^2 +
β ̄h
P
U(Lsi)
)]∣∣
∣
∣
∣
sP+1=s 1
. (12.3.22)
Eqn. (12.3.22) can now be differentiated with respect toLand transformed back to
the original path variablesx 1 ,...,xPto yield
Π =
1
Q(L,T)
lim
P→∞
(
mP
2 πβ ̄h^2
)P/ 2 ∫
dx 1 ···dxPPP(x 1 ,...,xP)
×exp
{
−
1
̄h
∑P
k=1
[
mP
2 β ̄h
(xk+1−xk)^2 +
β ̄h
P
U(xk)
]}∣∣
∣
∣
∣
xP+1=x 1