1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Many-body path integrals 473

x(τ)

(^0) ℏ
x
x
τ
1
2
x(τ)
(^0) ℏ
x
x
τ
1
2
β β
Fig. 12.9Representative paths in the direct (left) and exchange (right) terms in the path
integral of eqn. (12.5.3).
andx(1) 2 ,...,x( 2 P)for particles 1 and 2, respectively. Note that the path index is now a
superscript. The partition functions can be written as
Q(L,T) = lim
P→∞


(


mP
2 πβ ̄h^2

)P∫


dx(1) 1 ···dx( 1 P)dx(1) 2 ···dx( 2 P)

×


[


e−βφ

(


x(1) 1 ,...,x( 1 P),x(1) 2 ,...,x( 2 P)

)


±e−β
φ ̃

(


x(1) 1 ,...,x( 1 P),x(1) 2 ,...,x( 2 P)

)]


, (12.5.4)


where + and−are used for bosons and fermions, respectively, and


φ

(


x(1) 1 ,...,x( 1 P),x(1) 2 ,...,x( 2 P)

)


=


∑P


k=1

{


1


2


mω^2 P

[(


x( 1 k)−x( 1 k+1)

) 2


+


(


x( 2 k)−x( 2 k+1)

) 2 ]


+


1


P


U(x( 1 k),x( 2 k))

}


, (12.5.5)


withx( 1 P+1)=x(1) 1 andx( 2 P+1)=x(1) 2. The definition of the functionφ ̃has the same


mathematical form as eqn. (12.5.5) but with the endpoint conditionsx( 1 P+1)=x(1) 2


andx( 2 P+1)=x(1) 1. If the term exp(−βφ) is factored out of the brackets in eqn. (12.5.4),
then the partition functions for fermions and bosons can be shownto be


Q(L,T) = lim
P→∞

(


mP
2 πβ ̄h^2

)P∫


dx(1) 1 ···dx( 1 P)dx(1) 2 ···dx( 2 P)

×e
−βφ

(


x(1) 1 ,...,x( 1 P),x(1) 2 ,...,x( 2 P)

)[


det

(


A ̃


)]


(12.5.6)


for fermions and


Q(L,T) = lim
P→∞

(


mP
2 πβ ̄h^2

)P∫


dx(1) 1 ···dx( 1 P)dx(1) 2 ···dx( 2 P)
Free download pdf