Numerical evaluation 489
εvir
εvir
εvir
<ε >
vir
<ε >
vir
<ε >
vir
σ
σ
σ
Steps
Steps
Steps
Steps
Steps
Steps
Block size
Block size
Block size
Fig. 12.13Left column: Instantaneous virial estimator. Middle column: Cumulative average
of virial estimator. Right column: Error bar as a function ofblock size. Top row: Path-integral
molecular dynamics with no variable transformations. Middle row: Path-integral molecular
dynamics with staging transformation. Bottom row: Stagingpath-integral Monte Carlo with
j= 80. All energies are in units of ̄hω(reprinted with permission from Tuckermanet al. J.
Chem. Phys. 99 , 2796 (1993), copyright, American Institute of Physics).
and forNparticles inddimensions, the generalization of the virial estimator is
εvir({r(1),...,r(P)}) =
dNkT
2
+
1
P
∑P
k=1
∑N
i=1
1
2
(
r(ik)−r(ic)
)
·
∂U
∂r(ik)
+
1
P
∑P
k=1
U
(
r( 1 k),...,r(Nk)
)
, (12.6.41)
wherer(ic)is the centroid of particlei. Similarly, by applying the path-integral virial
theorem to the pressure estimator in eqn. (12.5.12), one can derive a virial pressure
estimator