522 Classical time-dependent statistical mechanics
pi←−pi+
∆t
2
Fi
xi←−xi+ ∆t
[
pxi
mi
+γyi
]
+
∆t^2
2 mi
γpyi
yi←−yi+ ∆t
pyi
mi
zi←−zi+ ∆t
pzi
mi
Update Forces
pi←−pi+
∆t
2
Fi. (13.5.9)
The action of the operator exp(iLmNHC∆t/2) is similar to the standard Nos ́e–Hoover
chain operator exp(iLNHC∆t/2) discussed in Section 4.11 (cf. eqn. (4.11.17)). The
presence of theγ-dependent operator requires only a slight modification. The operator
exp
{
−
δα
2
pη 1
Q 1
pi·
∂
∂pi
}
in eqn. (4.11.17) is replaced by
exp
{
−
δα
2
[
pη 1
Q 1
pi·
∂
∂pi
+γpyi
∂
∂pxi
]}
due to theγ-dependent term iniLmNHC. The action of this operator can be derived
by solving the three coupled differential equations
p ̇xi=−
pη 1
Q 1
pxi−γpyi, p ̇yi=−
pη 1
Q 1
pyi, p ̇zi=−
pη 1
Q 1
pzi. (13.5.10)
The solutions forpyiandpziare
pyi(t) =pyi(0)e−pη^1 t/Q^1
pzi(t) =pzi(0)e−pη^1 t/Q^1. (13.5.11)
Substituting the solution forpyi(t) into the equation forpxigives
p ̇xi=−
pη 1
Q 1
pxi−γpyi(0)e−pη^1 t/Q^1. (13.5.12)
This equation can be solved using exp[pη 1 t/Q 1 ] as an integrating factor, which yields
the solution
pxi(t) = [pxi(0)−γtpyi(0)] e−pη^1 t/Q^1. (13.5.13)
Evaluating the solutions forpxi(t),pyi(t), andpzi(t) att=δα/2 then gives the mod-
ification to the Suzuki-Yoshida Nos ́e–Hoover chain evolution necessary for treating
planar Couette flow.