1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

522 Classical time-dependent statistical mechanics


pi←−pi+

∆t
2
Fi

xi←−xi+ ∆t

[


pxi
mi

+γyi

]


+


∆t^2
2 mi

γpyi

yi←−yi+ ∆t
pyi
mi

zi←−zi+ ∆t

pzi
mi

Update Forces

pi←−pi+

∆t
2
Fi. (13.5.9)

The action of the operator exp(iLmNHC∆t/2) is similar to the standard Nos ́e–Hoover
chain operator exp(iLNHC∆t/2) discussed in Section 4.11 (cf. eqn. (4.11.17)). The
presence of theγ-dependent operator requires only a slight modification. The operator


exp

{



δα
2

pη 1
Q 1
pi·


∂pi

}


in eqn. (4.11.17) is replaced by


exp

{



δα
2

[


pη 1
Q 1

pi·


∂pi

+γpyi


∂pxi

]}


due to theγ-dependent term iniLmNHC. The action of this operator can be derived
by solving the three coupled differential equations


p ̇xi=−
pη 1
Q 1

pxi−γpyi, p ̇yi=−
pη 1
Q 1

pyi, p ̇zi=−
pη 1
Q 1

pzi. (13.5.10)

The solutions forpyiandpziare


pyi(t) =pyi(0)e−pη^1 t/Q^1

pzi(t) =pzi(0)e−pη^1 t/Q^1. (13.5.11)

Substituting the solution forpyi(t) into the equation forpxigives


p ̇xi=−

pη 1
Q 1

pxi−γpyi(0)e−pη^1 t/Q^1. (13.5.12)

This equation can be solved using exp[pη 1 t/Q 1 ] as an integrating factor, which yields
the solution
pxi(t) = [pxi(0)−γtpyi(0)] e−pη^1 t/Q^1. (13.5.13)


Evaluating the solutions forpxi(t),pyi(t), andpzi(t) att=δα/2 then gives the mod-
ification to the Suzuki-Yoshida Nos ́e–Hoover chain evolution necessary for treating
planar Couette flow.

Free download pdf