Time-dependent perturbation theory 537=Iˆ−
i
̄h∫tt 0dt′HˆI(t′) +(
i
̄h) 2 ∫tt 0dt′∫t′t 0dt′′HˆI(t′)HˆI(t′′), (14.2.14)and so forth. Thus we see that thekth-order solution is generated from the (k−1)th-
order solution according to the recursion formula:
UˆI(k)(t;t 0 ) =Iˆ−i
̄h∫tt 0dt′HˆI(t′)UˆI(k−1)(t′;t 0 ). (14.2.15)Settingk= 3 in eqn. (14.2.15), for example, yields the third-order solution
UˆI(3)(t;t 0 ) =Iˆ−i
̄h∫tt 0dt′HˆI(t′) +(
i
̄h) 2 ∫tt 0dt′∫t′t 0dt′′HˆI(t′)HˆI(t′′)−
(
i
̄h) 3 ∫tt 0dt′∫t′t 0dt′′∫t′′t 0dt′′′HˆI(t′)HˆI(t′′)HˆI(t′′′). (14.2.16)By taking the limitk→ ∞in eqn. (14.2.15) and summing over all orders, we obtain
the exact solution forUˆI(t;t 0 ) as a series:
UˆI(t;t 0 ) =∑∞
k=0(
−
i
̄h)k∫tt 0dt(1)···∫t(k−1)t 0dt(k)HˆI(t(1))···HˆI(t(k)). (14.2.17)The propagatorUˆI(t;t 0 ), approximated at any order in perturbation theory, can
be used to approximate the time evolution of the state vector|Φ(t)〉in the interaction
picture. In general, this evolution is
|Φ(t)〉=UˆI(t;t 0 )|Φ(t 0 )〉, (14.2.18)and from this expression, the time evolution of the original state vector|Ψ(t)〉in the
Schr ̈odinger picture can be determined as
|Ψ(t)〉=e−i
Hˆ 0 (t−t 0 )/ ̄h
|Φ(t)〉=e−i
Hˆ 0 (t−t 0 )/ ̄hˆ
UI(t;t 0 )|Φ(t 0 )〉=e−i
Hˆ 0 (t−t 0 )/ ̄hˆ
UI(t;t 0 )|Ψ(t 0 )〉≡Uˆ(t;t 0 )|Ψ(t 0 )〉. (14.2.19)Here, we have used the fact that|Φ(t 0 )〉=|Ψ(t 0 )〉. In the last line, the full propagator
in the Schr ̈odinger picture is identified as
Uˆ(t;t 0 ) =e−iHˆ^0 (t−t^0 )/ ̄hUˆI(t;t 0 ) =Uˆ 0 (t;t 0 )UˆI(t;t 0 ). (14.2.20)