1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

556 Quantum time-dependent statistical mechanics


Substituting the definitions ofR(ω) andR(−ω) from eqns. (14.3.7) and (14.3.15) into
this expression forQ(ω) yields


Q(ω) = ̄hω|F(ω)|^2

1


̄h^2

∫∞


−∞

dte−iωt


ˆV(0)Vˆ(t)−Vˆ(t)Vˆ(0)


=−ω|F(ω)|^2

1


̄h

∫∞


−∞

dte−iωt

〈[


Vˆ(t),Vˆ(0)

]〉


=iω|F(ω)|^2

∫∞


−∞

dte−iωtΦVV(t). (14.5.23)

Next, we divide the time integration into an integration xfrom−∞to 0 and from 0
to∞so that


Q(ω) =iω|F(ω)|^2

[∫ 0


−∞

dte−iωtΦVV(t) +

∫∞


0

dte−iωtΦVV(t)

]


=iω|F(ω)|^2

[∫∞


0

dteiωtΦVV(−t) +

∫∞


0

dte−iωtΦVV(t)

]


, (14.5.24)


where in the first term the transformationt→−thas been made. In order to proceed,
we need to analyze the time-reversal properties of the after-effect function.
Consider a general after-effect function ΦAB(t):


ΦAB(t) =
i
̄h

〈[


ei
Hˆ 0 t/ ̄hˆ
Ae−i
Hˆ 0 t/ ̄h
,Bˆ

]〉


. (14.5.25)


Substituting−tinto eqn. (14.5.25) yields


ΦAB(−t) =
i
̄h


e−i
Hˆ 0 t/ ̄hˆ
Aei
Hˆ 0 t/ ̄hˆ
B−Bˆe−i
Hˆ 0 t/h ̄ˆ
Aei
Hˆ 0 t/h ̄〉

=


i
̄h

[


Tr

(


ρˆ 0 e−i
Hˆ 0 t/ ̄hˆ
Aei
Hˆ 0 t/ ̄hˆ
B

)


−Tr

(


ˆρ 0 Bˆe−i
Hˆ 0 t/ ̄hˆ
Aei
Hˆ 0 t/ ̄h)]

. (14.5.26)


Because the trace is invariant under cyclic permutations of the operators and ˆρ 0 com-
mutes with the propagators exp(±iHˆ 0 t/ ̄h), we can express eqn. (14.5.26) as


ΦAB(−t) =

i
̄h

[


Tr

(


ρˆ 0 e−i
Hˆ 0 t/ ̄hˆ
Aei
Hˆ 0 t/ ̄hˆ
B

)


−Tr

(


ρˆ 0 Bˆe−i
Hˆ 0 t/ ̄hˆ
Aei
Hˆ 0 t/ ̄h)]

=


i
̄h

[


Tr

(


e−i
Hˆ 0 t/h ̄
ρˆ 0 Aˆei
Hˆ 0 t/ ̄hˆ
B

)


−Tr

(


Bˆe−iHˆ^0 t/ ̄hAˆeiHˆ^0 t/ ̄hˆρ 0

)]


=


i
̄h

[


Tr

(


ρˆ 0 Aˆei
Hˆ 0 t/ ̄hˆ
Be−i
Hˆ 0 t/ ̄h)
−Tr

(


Bˆe−iHˆ^0 t/ ̄hAˆρˆ 0 eiHˆ^0 t/ ̄h

)]


=


i
̄h

[


Tr

(


ρˆ 0 Aˆei
Hˆ 0 t/ ̄hˆ
Be−i
Hˆ 0 t/ ̄h)
−Tr

(


ρˆ 0 ei
Hˆ 0 t/ ̄hˆ
Be−i
Hˆ 0 t/ ̄hˆ
A

)]

Free download pdf