594 Langevin and generalized Langevin equations
is simple yet elegant. We begin by integrating eqns. (15.5.5) fromttot+ ∆tto yield
a pair of integral equations
q(t+ ∆t)−q(t) =∫t+∆ttds v(s)v(t+ ∆t)−v(t) =∫t+∆ttds f(q(s))−γ∫t+∆ttds v(s)+σ[w(t+ ∆t)−w(t)]. (15.5.9)Note that the second line in eqn. (15.5.9) also holds for anys∈[t,t+ ∆t]:
v(s) =v(t) +∫stdu f(q(u))−γ∫stdu v(u) +σ[w(s)−w(t)]. (15.5.10)Sinces∈[t,t+ ∆t], for small ∆t, eqn. (15.5.10) can be approximated as
v(s)≈v(t) + (s−t)f(q(t))−(s−t)γv(t) +σ[w(s)−w(t)]. (15.5.11)Integrating eqn. (15.5.11) fromttot+ ∆tyields
∫t+∆ttds v(s) = ∆tv(t) +1
2
∆t^2 [f(q(t))−γv(t)]+σ∫t+∆ttds[w(s)−w(t)]. (15.5.12)Similarly, we can evaluate time integrals of the force appearing in eqn.(15.5.9). By
integrating the identity df/dt= (∂f/∂q) ̇q= (∂f/∂q)vfromttos, we obtain
f(q(s)) =f(q(t)) +∫stdu v(u)f′(q(u))≈f(q(t)) + (s−t)v(t)f′(q(t)). (15.5.13)Hence, integrating eqn. (15.5.13) fromttot+ ∆tyields
∫t+∆ttds f(q(s)) = ∆tf(q(t)) +1
2
∆t^2 v(t)f′(q(t)). (15.5.14)Finally, substituting eqns. (15.5.14) and (15.5.12) into eqn. (15.5.9) and using the
properties of the Wiener process in eqns. (15.5.2) and (15.5.3) yieldsthe following
evolution scheme for the Langevin equation: