References 681
McGraw-Hill, New York, NY.
Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas.Phys. Rev., 136 ,
B864.
Hone, T. D., Poulsen, J. A., Rossky, P. J., and Manolopoulos, D. E. (2008). Compar-
ison of approximate quantum simulation methods applied to normal liquid helium
at 4 K.J. Phys. Chem. B, 112 , 294.
Hone, T. D., Rossky, P. J., and Voth, G. A. (2006). A comparative study of imaginary
time path integral based methods for quantum dynamics. J. Chem. Phys., 124 ,
154103.
Hoover, W. G. (1983). Nonequilibrium molecular dynamics. Ann. Rev. Phys.
Chem., 34 , 103.
Hoover, W. G. (1985). Canonical dynamics—Equilibrium phase-space distributions.
Phys. Rev. A, 31 , 1695.
Huang, C. and Carter, E. A. (2010). Nonlocal orbital-free kineticenergy density
functional for semiconductors.Phys. Rev. B, 81 , 045206.
Huang, K. (1963).Statistical Mechanics(2nd edn). John Wiley & Sons, New York,
NY.
Hummer, G. and Szabo, A. (2001). Free energy reconstruction from nonequilibrium
single-molecule pulling experiments.Proc. Natl. Acad. Sci. U.S.A., 98 , 3658.
Hwang, J. K., Chu, Z. T., Yadav, A., and Warshel, A. (1991). Simulations of quantum-
mechanical corrections for rate constants of hydride-transfer reactions in enzymes
and solutions.J. Phys. Chem., 95 , 8445.
Hwang, J. K. and Warshel, A. (1996). How important are quantum mechanical
nuclear motions in enzyme catalysis?J. Am. Chem. Soc., 118 , 11745.
Iftimie, R., Minary, P., and Tuckerman, M. E. (2005). Ab initiomolecular dy-
namics: Concepts, recent developments and future trends. Proc. Natl. Acad. Sci.
U.S.A., 102 , 6654.
Iftimie, R. and Tuckerman, M. E. (2005). Decomposing total IR spectra of aque-
ous systems into solute and solvent contributions: A computational approach using
maximally localized Wannier orbitals.J. Chem. Phys., 122 , 214508.
Ivanov, S. D., Witt, A., Shiga, M., and Marx, D. (2010). On artificial frequency
shifts in infrared spectra obtained from centroid molecular dynamics: Quantum
liquid water.J. Chem. Phys., 132 , 031101.
Izaguirre, J. A. and Hampton, S. S. (2004). Shadow hybrid MonteCarlo: an efficient
propagator in phase space of macromolecules.J. Comp. Phys., 200 , 581.
Izvekov, S. and Voth, G. A. (2006). Modeling real dynamics in the coarse-grained
representation of condensed phase systems.J. Chem. Phys., 125 , 151101.
Jadhao, V. and Makri, N. (2008). Iterative Monte Carlo for quantum dynamics.J.
Chem. Phys., 129 , 161102.
Janeˇziˇc, D., Praprotnik, M., and Merzel, F. (2005). Molecular dynamics integra-
tion and molecular vibrational theory. I. New symplectic integrators. J. Chem.
Phys., 122 , 174101.
Jarzynski, C. (1997). Nonequilibrium equality for free energy differences.Phys. Rev.
Lett., 78 , 2690.
Jarzynski, C. (2004). Nonequilibrium work theorem for a system strongly coupled to