1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
2.3 Inequalities and Limits 75

Now~ -t 0. Therefore, by the second squeeze principle, with an=
2
n +^3
n 3n - 7 '
2 3 2n + 3 2
L = -
3

, bn =-,and no= 22, we have proved that ---t -. D
n 3n - 7 3

Example 2.3.4 Use the second squeeze principle to prove that

. (3n


2
hm - 4n)
n-+oo n^2 + 5 = 3. (See Example 2.1.8.)

Solution: 'Vn EN,

I


3n

2


  • 4n _ 31 = I (3n


2


  • 4n) - 3 (n


2
+ 5) I
n^2 + 5 n^2 + 5

= 1-4n- 151
n^2 + 5

4n+ 15
n^2 + 5

4n+n
< -- 2 - ifn :2:: 15
n

5n 5
n^2 n

That is, n :2:: 15 ~ I 3n


2


  • 4
    n - 31 <
    n^2 +5 n


5
-t 0. Therefore, by the second

.. 1 3n2 - 4n 3 D
squeeze prmc1p e, n 2 +
5
-t.


MORE APPLICATIONS OF THE SQUEEZE PRINCIPLE

Theorem 2.3.5 Let A s;;; IR.


(a) If u =inf A, then 3 sequence {an} of elements of A such that an-tu.


(b) If u =sup A , then 3 sequence {an} of elements of A such that an-tu.


1
Proof. (a) Suppose u =inf A. Let n EN. Then u+ - is not a lower bound
n
1
for A , so :Jan EA 3 an< u + - (see Theorem 1.6.7, c:-criterion for infimum).
n

Free download pdf