78 Chapter 2 • Sequences
*Theorem 2.3.10 If {xn} is a sequence of nonzero numbers such that
lim IXn+l I = L < 1, then, Xn ----> 0.
n--+oo Xn
Proof. Suppose { Xn} is a sequence such that lim I Xn+^11 = L < 1. Then
n--+ex> Xn
1 - L > 0. Let o =
1
- L. Then o > 0. Since IXn+l I ----> L, :3 no E N 3
2 Xn
n ~no =? I lx;:1 I-LI < 5
=? L - o < lx;:1 I < L + o L. (_ \
I
=? --Xn+l I < L + --^1 - L = --L +^1 < t' 1. (Why?)
Xn 2 2
=? --<--<l.
I
Xn+ll L + 1
Xn 2
. L+ 1 q
Takmg r = -
2
- , we haven~ no=? lxn+_!I < r1xnl· Thus,
lxno+1 I < rlxno I
lxno~ < r lxno+1 I < l
2
f xno I
: t£ -)0
lxno+kl < rklxnol· (1)
By Theorem 2.3.7, lim rk = 0, since 0 < r < 1. Then (recall that no is
k--+oo
fixed),
Putting this together with Inequality (1), we have
lxno+kl < rklxn 0 I----> 0. (ask----> oo)
Therefore, by the second squeeze principle, lim lxno+k I
k--+oo
n--+oo lim lxnl =^0 (Exercise 10), so n--+oo lim Xn = 0. •
Corollary 2.3.11 For any fixed real number c, lim (en!) = 0.
n--+oo n.
Proof. Exercise 11. •
- Therefore,
*An asterisk before a theorem, proof, or other item in this chapter indicates that the item is
challenging or can be omitted, especially in a one-semester course.