2.5 Monotone Sequences 95
Part 2- find lim Xn· By P art 1, we know that 3 L = lim X n E R We
n-+oo n-+ao
proceed to find L. Consider the defining equation: Xn+l = Jxn + 2. By squaring
both sides, we have
(xn+1)
2
= Xn + 2. Thus,
lim (xn+1)
2
n-+oo - = n-+lim oo (xn + 2).
Applying the algebra of limits to both sides of this equation,
£^2 = L + 2
£^2 - L- 2 = 0
(L - 2)(£ + 1) = 0
L = 2 or L = -1.
Now, L =/:--1 (see Theorem 2.3.12 (b) with K = 0). Thus, L = 2. D
Example 2.5.9 (The Number e) The sequence { (1 + ~) n} converges.
Proof. (a ) We first show that this sequence is strictly increasing. By the
binomial theorem , ( 1 + ~) n
l+n(~) + n(n-1) (~)
2
+ n(n-l)(n-2) (~)
3
+··· + (~)n
n 2 n 2·3·, n. n
l+n(~)+~~n-l+l~n-ln-2+··+ 1 [~n-ln-2···~] =
n 2n n 2·3n n n 2·3···n n n n n
1+1+~ (1-~) +-
1
(1-~) (1-~) +·. ·+~ [(1-~) (1-~) ...
2 n 2 · 3 n Jl n! n n
(l-n~l)J.
1
;
, ( 1 )n+l
Again, by the binomial theorem , 1 + --
n + 1
1+1 + ~ (1--
1
-) + -
1
- (1--
1
-) (1-·-·-
2
-) + ... +
2 n+l 2 · 3 · n+l n+l
(n~~)! t(^1 ~ n:i) (l-n!1) ··· (l-n:1)]·
(
1 ) n+l
Notice that in the above expansion of 1 + n +
1
,
(i) all t erms are positive;
(ii) each of the first n t erms is greater than the corresponding t erm in the
expansion o'f ( 1 + ~) n ;