1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1

136 Chapter 2 • Sequences



  1. For each of the following, prove or find a counterexample for which the
    given equation is not true:
    (a) lim (xn+ Yn) = lim Xn + lim Yn


(b)

(c)

n--+oo n-+oo n--+oo

n-+oo lim (XnYn) = ( n--+oo lim Xn) ( n-+oo lim Yn)
lim (xn+ Yn) = lim Xn + lim Yn
n->oo n->oo n->oo

(d) lim (XnYn) = ( lim Xn) ( lim Yn)
n--+oo n--+oo n--+oo


  1. Prove that
    (a) If {x 11 } and {Yn} are bounded above, then lim (xn+ Yn):::; lim Xn+
    n--+oo n-+oo
    n->oo lim Yn·
    (b) If {xn} is bounded above and r :::'.: 0, then lim rxn = r lim Xn.
    n--+oo n--+oo
    ( c) If { Xn} and {Yn} are bounded sequences of nonnegative numbers,
    then n-+oo lim (XnYn) ::=; ( n--+oo lim Xn) ( n-+oo lim Yn).


(d) Upper limits preserve inequalities. That is, if \in EN, Xn :::; Yn, then
lim Xn ::=; lim Yn·
n--+oo n-+oo


  1. State and prove results similar to those of Exercise 2.9.6 for lower limits.

  2. Given any sequence {xn}, prove that lim (-xn)
    n->oo

    • lim Xn and
      n->oo
      lim ( - x 11 ) = - lim Xn·
      n->oo n->oo



  3. Suppose {xn} and {yn} are sequences of nonnegative numbers such that
    Xn -t x f 0 and lim Yn = y. Prove that lim XnYn = xy. [Hint: Use
    n-+oo n--+oo
    subsequences and Theorem 2.9.10.]

Free download pdf