8.6 Power Series 517
(b) Applying similar reasoning to Example 8.6.18 (b), we can show that
the Maclaurin series for tan-^1 x is a valid representation of tan-^1 x on the
interval [-1, l]. As a consequence we have the interesting result,
7r 1 1 1 1
4=l-3+5-7+9-···
(See Exercise 15.) From this we get a series representation for 7r, although a
very slowly converging one. D
EXERCISE SET 8.6
l. Prove Corollary 8.6.3.
- Prove Theorem 8.6.7.
- Prove Theorem 8.6.8.
- Find the radius of convergence and the interval of convergence of each of
the following power series.
00 00 k'
(a) Llnk(x + l)k (b) L
2
~xk
k=l k=O
~ xk (d) ~ (x + 5)k
(c) ~ kk ~ k33k
k=l k=l
(e) f ~: (x - 3)k (f) f ( k;
1
) k (x + 4)k
k=O k=l
00 ( 3)k 00 1
(g) L k-+2(x+l)k (h) L1n2k(x-^2 )k
k~O ( k ) k k~l ( k ) k
(i) ~ cos
6
7r (x - 3)k (j) ~ 1 +sin : (x + 2)k
(k) f 1~2k (x + 2)k (1) f :! (x + 7)k
k=l k=l
(m) 1 - ~x + ~x^2 - ~x^3 + l ·^3.^5.^7 x^4 - · · · [See Exercise
2 2·4 2·4·6 2·4·6·8
8.3.13.]
x x2 x3 x4 x5 oo
(n) 1 + - + - + - + - + - + · · · = 2:::; akxk
2 32 23 34 25 k=O '
h {
( ~) k if k is odd }
w ere ak = k.
(~) if k is even
- Prove Theorem 8.6.9.
- Prove the claims made in Example 8.6.13.