1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
9.3 Implications of Uniform Convergence in Calculus 567


  1. Evaluate each of the following integrals and justify your answers:


( ) r ~ cos kx d (b) r ~ sink2kx dx ( ) (


2
~ kx
a lo ~ ~ x lo ~ c 11 ~ ke- dx

n n^2 - -


  1. Use the functions fn(x) = over the interval
    {


l. - -"'--if 0 < x < n }


0 if x > n
(0, +oo) to show that Theorem 9.3.8 does not apply over infinite intervals.
That is, uniform convergence of {Jn} does not always preserve (improper)
integrability over infinite intervals.


  1. Prove Corollary 9.3.12.

  2. Use Corollary 9.3.12 to show that V lxl < 1 .!!:_ ( f xk )
    'dx k= 1 k(k+l)
    00 k-1
    2:-x-.
    k=l k + 1
    . 00 (-l)k

  3. Use Corollary 9.3.12 to prove that the function y(x) = k~O ~x^3 k is a


solution of the differential equation y' + 3x^2 y = 0 on ( -oo, oo).



  1. Use results of this section to find the sums of the following series, for
    xE(-1,1):
    (a) 1+2x + 3x^2 + 4x^3 + · · ·. [Think geometric series.]
    x3 x4 x5 x6
    (b) t-:3 +
    2


.
4

+
3

.
5

+
4

.
6

+ · · ·. [See Equation (22) of Example 8.6.18.]


  1. Show that { .j x^2 + ~} converges uniformly to lxl on R Verify that each


function in the sequence is differentiable everywhere, but the limit func-
tion is not.
cosnx.


  1. For all n EN, define fn(x) = --on (-00,00). Prove that Un} is
    n
    a sequence of differentiable functions on (-oo, oo) converging uniformly
    to 0 on ( - oo, oo), but {f~ ( x)} diverges except when x is an integral
    multiple of 1r. [See Exercise 2.6.20.] Doesn't this contradict Theorem
    9.3.11? Explain.

  2. Explain what happens if you try to redo Example 9.3. 13 using the fol-
    lowing functions instead of the one given there?
    00 00
    (b) L sin I (c) 2: cos I
    k=l k=l

Free download pdf