2.1 Basic Concepts: Convergence and Limits 59
The latter inequality will be true if
n^2 + 5
4 n + 15 > 2, 000; i.e.,
n^2 + 5 > 8000n + 30, 000
n^2 - 8000n > 29, 995
n(n - 8000) > 29, 995.
Note that 8004(8004 - 8000) = 8004 · 4 = 32, 016 > 29, 995. In fact
n 2: 8004 =? n(n - 8000) 2: 8004(4) > 29, 995.
Thus, we take n 0 = 8004. The above analysis shows that
I
3n
2
n 2: 8004 =? - 4n I
n^2 +5 -^3 < .0005..
(c) Let c > 0 be a fixed but arbitrary positive number. We want to find an
1
3n
2
no EN 3 n 2: no=? n -4n I
2 + 5 -^3 < t=:. As shown above,
I
3n
2
- 4n _ 31 = 4n + 15.
n^2 + 5 n^2 + 5
Thus, our objective is to find an no E N 3
4n+ 15
n 2: no =? n2 + 5 < c.
Notice that
4n + 15 4n + 15
<
n^2 + 5 n^2
<
4n+n
n2
5
n
if n > 15
4n + 15 5
Thus, 2 < c if n > 15 and - < c. But the last inequality will be
n +5 n
guarantee d i .f -n > - ;^1. i.e., n > -.^5
5 c c
By the Archimedean property, 3 n 0 E N 3 no > ~ + 15.
- ----c--
( We want to be sure that both n > 15 ~nd n > ~·)