1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1

68 Chapter 2 11 Sequences


=} JXnYn - LMJ < €.


Therefore, lim (XnYn) = LM = lim Xn· lim Yn·
n-?OO n-+oo n-+oo

(e) Let € > 0. Since Yn --. M -:/=-0, {yn} is bounded away from 0. In fact,
JM[.
by Theorem 2.2.12, 3n1 E N 3 n :'.'.'. n1 =} IYnl > -
2


-. Also, smce Yn --. M,
c[MJ^2.
3n2 EN 3 n :'.'.'. n2 =} IYn - MJ < -
2


-. Let no= max{n1,n2}. Then,


=} IYnl > [~J and IYn - M[ < c[~[


2

1 2 cJM[^2
=} IYn[ < [MJ and IYn - MJ < -2-

[Yn - M[ 1 [Yn - M[ 2 cJMf 2
=} [Yn[[M[ = 1YJ [M[ < [M[. 2[M[

1


1 1 I IM -Yn I IYn - M[
=} Yn - M = YnM = IYn[[M[ < €

=}12__2_1<€.
Yn M

Therefore lim ( 2_) = 2_ =
1
'n->oo Yn M lim Yn.
n->oo
(f) Exercise 14.

(g) Suppose lim Xn = L :'.'.'. 0, and 3 n 1 E N 3 n :'.'.'. n 1 =} Xn :'.'.'. 0. Let € > 0.
n->oo
Case 1 (L = 0): Then 3n2 E N 3 n :'.'.'. n2 =} [xn - Of < c^2. Choose
no= max{n 1 ,n2}. Then


n :'.'.'. no =} 0 :::; Xn < c^2
=} ..;x;;. < €

=} 1..;x;;. - 01 < €.
Therefore, lim n->oo ..;x;;_ = 0 = .JI,.
Free download pdf