1550078481-Ordinary_Differential_Equations__Roberts_

(jair2018) #1

266 Ordinary Differential Equations



  1. Use Theorem 5.3 and Table 5.1 to find an inverse Laplace transform of
    the following functions.


e-s
b.

1 - e-2s
a.
s+2^32
se-7rs
d.

se-7rs
c.
s^2 + 9 s^2 -^9
e-2s
f.

se-3s
e.
s^2 + 2s + 2 s2 + 2s +^2
e-3s
h.

e-s
g.
s^2 + 2s - 3 s^2 - 2s + 1


  1. Solve the following initial value problems. The functions fi(x) a re as
    defined in Exercise 1.


a. y' + 2y = fi(x); y(O) = 1
b. y" - y' - 2y = f2(x); y(O) = 0, y'(O) = 1
c. y" - 2y' = f3(x); y(O) = 1, y'(O) = 0
d. y" - 2y' + y = f4(x); y(O) = 0, y'(O) = 1

e. y^11 +4y=f5(x); y(O)=l, y'(O)=l

g. y"-4y=f6(x); y(O)=O, y'(O)=O
g. y" - 4y' + 5y = h(x); y(O) = 1, y'(O) = 0

IConnents on Computer Software! In example 3, we solved the initial
value problem y" + y = h(x); y(O) = 0, y'(O) = 1, where h( x) is the
piecewise defined function


l


0, x < 1

h(x) = 2, 1 ::::; x < 2

1, 2::::; x

The following ten MAPLE statements a lso solve this initial value problem and
output some important intermediate results.


with(inttrans):
a li as(L(y(x)) =laplace(y(x), x, s)):
y(O) := 0:
D(y)(O) := 1:
Free download pdf