266 Ordinary Differential Equations
- Use Theorem 5.3 and Table 5.1 to find an inverse Laplace transform of
the following functions.
e-s
b.
1 - e-2s
a.
s+2^32
se-7rs
d.
se-7rs
c.
s^2 + 9 s^2 -^9
e-2s
f.
se-3s
e.
s^2 + 2s + 2 s2 + 2s +^2
e-3s
h.
e-s
g.
s^2 + 2s - 3 s^2 - 2s + 1
- Solve the following initial value problems. The functions fi(x) a re as
defined in Exercise 1.
a. y' + 2y = fi(x); y(O) = 1
b. y" - y' - 2y = f2(x); y(O) = 0, y'(O) = 1
c. y" - 2y' = f3(x); y(O) = 1, y'(O) = 0
d. y" - 2y' + y = f4(x); y(O) = 0, y'(O) = 1
e. y^11 +4y=f5(x); y(O)=l, y'(O)=l
g. y"-4y=f6(x); y(O)=O, y'(O)=O
g. y" - 4y' + 5y = h(x); y(O) = 1, y'(O) = 0
IConnents on Computer Software! In example 3, we solved the initial
value problem y" + y = h(x); y(O) = 0, y'(O) = 1, where h( x) is the
piecewise defined function
l
0, x < 1
h(x) = 2, 1 ::::; x < 2
1, 2::::; x
The following ten MAPLE statements a lso solve this initial value problem and
output some important intermediate results.
with(inttrans):
a li as(L(y(x)) =laplace(y(x), x, s)):
y(O) := 0:
D(y)(O) := 1: