Linear Systems of First-Order Differential Equations 347
EXAMPLE 2 Verifying Linear Independence of a Set of Vector
Functions
Show that t he set of vector functions
is linearly independent on the interval ( -oo, oo).
SOLUTION
Forming the matrix Y and computing det Y , we find
(
ex
detY = det 0
2 ex
= ex ( -e-x) (3) + e-x (1) (2ex) + 2(0) ( e-x)
- ex (1) ( e-x) - e-x (0) (3) - 2( -e-x) (2ex)
= - 3 + 2 + 0 - 1 - 0 + 4 = 2.
Since det Y I 0 for any x E (-oo, oo ), the given set of vector functions is
linearly independent on ( - oo, oo).
EXERCISES 8.1
For exercises 1-16, let
(
-1 2 1)
A= 0 3 -4 ' (
2 -1)
B = ~ ~ ' y=(-~),
and z = (1 -2).
State whether it is possible to compute the given expression or not.
When possible, compute the expression.
1. AB 2. BA 3. Ax 4. Ay 5. Az 6. Bx
- By 8. Bz 9. xy 10. xz 11. yz^12. zy
- A+ B 14. x + y 15. Ax+ y 16. By+ x